Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{-3}{100}< 0< \frac{2}{3}\)
\(\Rightarrow\frac{-3}{100}< \frac{2}{3}\)
b) Ta có : \(\frac{267}{268}< 1< \frac{1347}{1343}\)
\(\Rightarrow\frac{267}{268}< \frac{1347}{1343}\)
\(\Rightarrow\frac{267}{-268}< \frac{-1347}{1343}\)
c) Ta có : \(\frac{2017.2018-1}{2017.2018}=\frac{2017.2018}{2017.2018}-\frac{1}{2017.2018}=1-\frac{1}{2017.2018}\)
\(\frac{2018.2019-1}{2018.2019}=\frac{2018.2019}{2018.2019}-\frac{1}{2018.2019}=1-\frac{1}{2018.2019}\)
mà \(2017.2018< 2018.2019\)
\(\Rightarrow\frac{1}{2017.2018}>\frac{1}{2018.2019}\)
\(\Rightarrow1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)
\(\Rightarrow\frac{2017.2018-1}{2017.2018}< \frac{2018.2019-1}{2018.2019}\)
d) Ta có : \(\frac{2017.2018}{2017.2018+1}=\frac{2017.2018+1}{2017.2018+1}-\frac{1}{2017.2018+1}=1-\frac{1}{2017.2018+1}\)
\(\frac{2018.2019}{2018.2019+1}=\frac{2018.2019+1}{2018.2019+1}-\frac{1}{2018.2019+1}=1-\frac{1}{2018.2019+1}\)
mà \(2017.2018+1< 2018.2019+1\)
\(\Rightarrow\frac{1}{2017.2018+1}>\frac{1}{2018.2019+1}\)
\(\Rightarrow1-\frac{1}{2017.2018+1}< 1-\frac{1}{2018.2019+1}\)
\(\Rightarrow\frac{2017.2018}{2017.2018+1}< \frac{2018.2019}{2018.2019+1}\)
Ta có:
\(\Rightarrow A=B.\)
\(\Rightarrow A^{2017}=B^{2017}\)
\(\Rightarrow\left(A^{2017}-B^{2017}\right)^{2018}=\left(B^{2017}-B^{2017}\right)^{2018}=0^{2018}=0.\)
Vậy \(\left(A^{2017}-B^{2017}\right)^{2018}=0.\)
Chúc bạn học tốt!
ta có B= 1/2018+2/2017+3/2016+...+2017/2+2018/1
=> B=1+1+1+..+1( 2018 số hạng 1)+ 1/2018+..+2017/2
=> B= (1+1/2018)+(1+2/2017)+(1+3/2016)+...+(1+2017/2)+ 2019/2019
=> B= 2019 *(1/2+1/3+...+1/2019)
=> A/B= (1/2+1/3+...+1/2019)/2019*(1/2+1/3+..+1/2019)
=> A/B= 1/2019
\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{1}{2019}+\frac{2}{2018}+\frac{3}{2017}+...+\frac{2018}{2}+\frac{2019}{1}}\)
\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{1}{2019}+1+\frac{2}{2018}+1+\frac{3}{2017}+1+...+\frac{2018}{2}+1+1}\)
\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{\frac{2020}{2019}+\frac{2020}{2018}+\frac{2020}{2017}+...+\frac{2020}{2}+\frac{2020}{2020}}\)
\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}}{2020\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2020}\right)}\)
\(\frac{A}{B}=\frac{1}{2020}\)
a) ta có: \(1-\frac{2016}{2017}=\frac{1}{2017}\)
\(1-\frac{2017}{2018}=\frac{1}{2018}\)
\(\Rightarrow\frac{1}{2017}>\frac{1}{2018}\Rightarrow1-\frac{2016}{2017}>1-\frac{2017}{2018}\Rightarrow\frac{2016}{2017}< \frac{2017}{2018}\)
b) ta có: \(\frac{2017}{2016}-1=\frac{1}{2016};\frac{2018}{2017}-1=\frac{1}{2017}\)
\(\Rightarrow\frac{1}{2016}>\frac{1}{2017}\Rightarrow\frac{2017}{2016}-1>\frac{2018}{2017}-1\Rightarrow\frac{2017}{2016}>\frac{2018}{2017}\)
\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)
\(\Rightarrow A=(1-\frac{1}{2017})+(1-\frac{1}{2018})+(1-\frac{1}{2019})\)
\(\Rightarrow A=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
\(\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)<\(\frac{3}{2017}\)<\(1\)
\(\Rightarrow A\)>\(3-1=2\)
\(B=\frac{2016+2017+2018}{2017+2018+2019}\)
\(\Rightarrow B=1-\frac{3}{6054}\)
\(\Rightarrow B=1-\frac{1}{2018}\)
\(B\)<\(1\);\(A\)>\(2\)
\(\Rightarrow A\)>\(B\)
Ta có : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)
Mặt khác : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\)
\(\Rightarrow\frac{a_1}{a_2}=-5\) (1)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+a_3+....+a_{2017}}{a_2+a_3+a_4+.....+a_{2018}}\) (2)
Từ (1) và (2)
=> S = -5
kho qua !