Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: D
Bài 2:
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)
\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)
Giải
Ta có: \(a^b=b^c=c^a\)
\(\Leftrightarrow a=b=c\)
\(\Leftrightarrow M=1^{2016}-1^{2017}\)
\(\Leftrightarrow M=1-1\)
\(\Leftrightarrow M=0\)
Câu hỏi của ✨♔♕ Saiko ♕♔✨ - Toán lớp 6 - Học toán với OnlineMath
\(C=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.........\frac{2499}{2500}\)
\(=\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}......\frac{49.51}{50^2}\)
\(=\frac{2.3.4....49}{3.4.5....50}.\frac{4.5.6....51}{3.4.5....50}\)
\(=\frac{1}{25}.17=\frac{17}{25}\)
\(a)\) \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{1000}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{999}{1000}\)
\(A=\frac{1.2.3.....999}{2.3.4.....1000}\)
\(A=\frac{1}{1000}.\frac{2.3.4.....999}{2.3.4.....999}\)
\(A=\frac{1}{1000}\)
Vậy \(A=\frac{1}{1000}\)
Đặt \(\frac{a}{2017}=\frac{b}{2019}=\frac{c}{2021}=k\)=> a = 2017k, b = 2019k, c = 2021k, thay vào M ta có:
M = \(\frac{\left(2017k-2019k\right).\left(2019k-2021k\right)}{\left(2017k-2021k\right)^2}=\frac{\left(-2k\right)^2}{\left(-4k\right)^2}=\frac{\left(-2k\right)^2}{2^2.\left(-2k\right)^2}=\frac{1}{4}\)