K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

khó quá ak

ừ, bạn bik làm thì giúp mình nha ^^

10 tháng 12 2019

ta cs: \(\frac{a+2006}{a-2006}=\frac{b+2005}{b-2005}\)

\(\Rightarrow\frac{a+2006}{b+2005}=\frac{a-2006}{b-2005}=\frac{a}{b}=\frac{2006}{2005}\)

=> dpcm

12 tháng 7 2017

Đặt 

\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

=> \(\frac{2004a-2005b}{2004a+2005b}=\frac{2004bk-2005b}{2004bk+2005b}=\frac{2004k-2005}{2004k+2005}\left(1\right)\)

\(\frac{2004c-2005d}{2004c+2005d}=\frac{2004dk-2005d}{2004dk+2005d}=\frac{2004k-2005}{2004k+2005}\left(2\right)\)

Từ (1) và (2)

=> \(\frac{2004a-2005b}{2004a+2005b}=\frac{2004c-2005d}{2004c+2005d}\left(đpcm\right)\)

10 tháng 5 2017

\(\frac{a}{b}< \frac{a+2006}{b+2006}\)

\(\Leftrightarrow a\left(b+2006\right)< b\left(a+2006\right)\)

\(\Leftrightarrow ab+2006a< ab+2006b\)

\(\Leftrightarrow2006a< 2006b\)

\(\Leftrightarrow a< b\) (thỏa mãn đề bài)

Vậy \(\frac{a}{b}< \frac{a+2006}{b+2006}\)

1 tháng 5 2016

\(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2015}+\frac{1}{2016}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{1003}\right)\)

\(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2016}\)

1 tháng 5 2016

Đặt A=1-1/2+1/3-1/4+.......+1/2005-1/2006

=>A= (1+1/3+1/5+...+1/2005)-(1/2+1/4+1/6+.....+1/2006)

=>A=(1+1/2+1/3+...+1/2005)-2.(1/2+1/4+1/6+...+1/2006)

=>A=(1+1/2+1/3+....+1/2005)-(1+1/2+1/3+...+1/1003)

=>A=1/1004+1/1005+.....+1/2006

Vậy A=1/1004+1/1005+.....+1/2006 ( Điều phải chứng minh )


 

28 tháng 2 2020

Bài 1:

a) Sửa lại là: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\) nhé.

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)

\(=3^n.\left(9+1\right)-2^{n-1}.2.\left(4+1\right)\)

\(=3^n.10-2^{n-1}.2.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)\)

\(10⋮10\) nên \(10.\left(3^n-2^{n-1}\right)⋮10.\)

\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\left(đpcm\right)\left(\forall n\in N^X\right).\)

Chúc bạn học tốt!