K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\left(k\in R\right)\)

\(\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)

Thay vào A ta được \(A=\frac{2k-5k+7k}{2k+2\cdot5k-7k}=\frac{4k}{5k}=\frac{4}{5}\)

Vậy A=\(\frac{4}{5}\)

1 tháng 11 2017

Đặt a/2 = b/5 = c/7 = k => a = 2k

                                       b = 5k

                                       c = 7k

=> a - b + c / a + 2b - c = 2k - 5k + 7k / 2k + 2 * 5k - 7k = 4k / 5k = 4/5

Vậy A = 4/5

25 tháng 10 2020

Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

=> \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\) (Vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\))

=> \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)(đpcm)

4 tháng 2 2016

30

ủng hộ mk nha

4 tháng 2 2016

mình mới học lớp 6

3 tháng 6 2020

\(A=\frac{1}{a^2+b^2-\left(-a-b\right)^2}+\frac{1}{b^2+c^2-\left(-b-c\right)^2}+\frac{1}{c^2+a^2-\left(-c-a\right)^2}\)

\(A=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{a+b+c}{-2abc}=0\)

11 tháng 6 2016

Theo t/c dãy tỉ số=nhau:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=>a=b=c=d

Thay vào biểu thức A ,ta đc:

\(A=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)

\(=\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)

Vậy A=2

 

16 tháng 6 2016

Vì a/b=1=>a=b;b/c=1=>b=c;c/d=1=> c=d;d/a=1=>a=d

=>a=b=c=d

OK?~_~