Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}\)= \(\frac{c}{d}\)=> \(\frac{a}{c}\)= \(\frac{b}{d}\)= \(\frac{4a}{4c}\)= \(\frac{6b}{6d}\)= \(\frac{4a+6b}{4c+6d}\)
\(\frac{a}{c}\)= \(\frac{b}{d}\)= \(\frac{5a}{5c}\)= \(\frac{7b}{7d}\)= \(\frac{5a-7b}{5c-7d}\)
=> \(\frac{4a+6b}{4c+6d}\)= \(\frac{5a-7b}{5c-7d}\)
=> \(\frac{4a+6b}{5a-7b}\)= \(\frac{4c+6d}{5c-7d}\)
b, đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
ta có :
\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\)
\(\frac{5c+3d}{5c-3d}=\frac{5dk+3b}{5dk-3b}=\frac{d\left(5k+3b\right)}{d\left(5k-3b\right)}=\frac{5k+3b}{5k-3b}\)
\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3b}\)
xin lỗi nha viết gấp quá quên cả kết luận :))
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{2b}{2d}=\frac{4a-2b}{4c-2d}=\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a+2b}{5c+2d}\)
Suy ra \(\frac{4a-2b}{4c-2d}=\frac{5a+2b}{5c+2d}\)Suy ra điều phải chứng minh: \(\frac{4a-2b}{5a+2b}=\frac{4c-2d}{5c+2d}\)
b) Đặt \(\hept{\begin{cases}\frac{a}{b}=k\Rightarrow a=kb\\\frac{c}{d}=k\Rightarrow c=kd\end{cases}}\)
VT : \(\frac{5a+3b}{5a-3b}\Rightarrow\frac{5kb+3b}{5ka-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\) (1)
VP : \(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\) (2)
Từ (1) và (2) => đpcm
Tìm các số a, b, c biết rằng :
1 . Ta có: \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)
Ap dụng tính chất dãy tỉ số bắng nhau ta dược :
\(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)
Nên : a/20=1/3\(\Leftrightarrow\) a=1/3.20 \(\Leftrightarrow\)a=20/3
b/9=1/3 \(\Leftrightarrow\) b=1/3.9 \(\Leftrightarrow\) b=3
c/6=1/3 \(\Leftrightarrow\) c=1/3.6 \(\Leftrightarrow\) c= 2
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=>a=bk;b=ck;c=dk
Ta có: \(\frac{3a^3-4b^3+5c^3}{3b^3-4c^3+5d^3}=\frac{3\left(bk\right)^3-4\left(ck\right)^3+5\left(dk\right)^3}{3b^3-4c^3+5d^3}\)
=\(\frac{3b^3.k^3-4c^3.k^3+5d^3.k^3}{3b^3-4c^3+5d^3}=\frac{k^3.\left(3b^3-4c^3+5d^3\right)}{3b^3-4c^3+5d^3}=k^3\)(1)
Ta có: \(\frac{a}{d}=\frac{b.k}{d}=\frac{c.k^2}{d}=\frac{d.k^3}{d}=k^3\)(2)
Từ (1) và (2)=> \(\frac{a}{d}=\frac{3a^3-4b^3+5c^3}{3b^3-4c^3+5d^3}\)
\(\frac{\left(5a-4b\right)6}{36}=\frac{\left(6a-4c\right)5}{25}=\frac{\left(6b-5c\right)4}{16}=\frac{\left(5a-4b\right)6-\left(6a-4c\right)5+\left(6b-5c\right)4}{36-25+16}=\frac{0}{27}\)
\(\Rightarrow5a=4b\Leftrightarrow\frac{a}{4}=\frac{b}{5}\)
\(\Rightarrow6a=4c\Leftrightarrow\frac{a}{4}=\frac{c}{6}\)
\(\Rightarrow\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\)
ờ, vậy chúc hai n` giải toán zui zẻ