K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2019

Thay \(y=1\) vào (1) ta được:

\(x=1+3\)

\(\Rightarrow x=4.\)

Vậy \(\left(x;y\right)=\left(4;1\right).\)

Chúc bạn học tốt!

31 tháng 8 2018

1) ta có: \(x:3=y.15\Rightarrow x\cdot\frac{1}{3}=y.15\Rightarrow\frac{x}{15}=\frac{y}{\frac{1}{3}}\)

ADTCDTSBN

...

2) bn ghi thiếu đề r

3) ta có: \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=7k\\y=3k\end{cases}}\)

mà xy = 189 => 7k.3k = 189

                          21 k2 = 189

                                 k2 = 9 = 32 = (-3)2 => k = 3 hoặc k  = - 3

TH1: k = 3

x = 7.3 => x  = 21

y = 3.3 => y = 9

...

                           

31 tháng 8 2018

4) ta có: \(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}\)

ADTCDTSBN

...

2 tháng 8 2016

c) \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)

\(\Rightarrow\orbr{\begin{cases}x^2=4.49=14^2\\y^2=4.16=8^2\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=14\\y=8\end{cases}}\)

d) \(\frac{x}{2}=\frac{y}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}\Rightarrow\frac{x^2.y^2}{4.16}=\frac{x^4}{16}=\frac{4}{64}=\frac{1}{16}\Rightarrow x=1;y=2\)

2 tháng 8 2016

a) Ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) và \(5x-y+3z=-16\)

\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{4}=-4\)

\(\Rightarrow\frac{5x}{15}=-4\Rightarrow5x=\left(-4\right).15=-60\Rightarrow x=60:5=12\)

\(\Rightarrow\frac{y}{5}=-4\Rightarrow y=\left(-4\right).5=-20\)

\(\Rightarrow\frac{3z}{-6}=-4\Rightarrow3z=\left(-4\right).\left(-6\right)=24\Rightarrow y=24:3=8\)

Vậy ___________________________________________________________

7 tháng 9 2017

Bài 1:

Bài 2:

\(\frac{4^x}{2^{x+y}}=8\Leftrightarrow4^x=8.2^{x+y}\Leftrightarrow\left(2^2\right)^x=2^3.2^{x+y}\Leftrightarrow2^{2x}=2^{x+y+3}\)<=>2x=x+y+3<=>x=y+3

\(\frac{9^{x+y}}{3^{5y}}=243\Leftrightarrow9^{x+y}=243.3^{5y}\Leftrightarrow\left(3^2\right)^{x+y}=3^5.3^{5y}\Leftrightarrow3^{2x+2y}=3^{5y+5}\)<=>2x+2y=5y+5

<=>2x=3y+5 mà x=y+3 => 2(y+3)=3y+5 <=> 2y+6=3y+5 <=> 6-5=3y-2y <=> y=1 <=> x=1+3=4

Vậy xy=4.1=4

21 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)

= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5

Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11

\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17

\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23

Vậy x = 11 ; y = 17 ; z = 23

 

21 tháng 11 2016

a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)

\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)

Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

\(\Rightarrow x^2=1;y^2=4;z^2=9\)

=> x = 1 hoặc -1

y = 2 hoặc -2

z = 3 hoặc -3

31 tháng 1 2018

\(\frac{4^x}{2^{x+y}}=8\)

\(\frac{2^{2x}}{2^x.2^y}=8\)

\(\frac{2^x}{2^y}=8\)

\(2^x=2^3.2^y\)

\(2^x=2^{3+y}\)

\(\Rightarrow x=3+y\)

\(\frac{9^{x+y}}{3^{5y}}=243\)

\(\frac{3^{2x+2y}}{3^{5y}}=3^5\)

\(\frac{3^{2x}.3^{2y}}{3^{5y}}=3^5\)

\(\frac{3^{2x}}{3^{3y}}=3^5\)

\(3^{2x}=3^5.3^{3y}\)

\(3^{2x}=3^{5+3y}\)

\(\Rightarrow2x=3y+5\)

\(\hept{\begin{cases}2x-3y=5\\x=3+y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(3+y\right)-3y=5\\x=3+y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6+2y-3y=5\\x=3+y\end{cases}}\Leftrightarrow\hept{\begin{cases}-y=-1\\x=3+y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1\\x=4\end{cases}}\)

vậy...

31 tháng 1 2018

\(\frac{4^x}{2^{x+y}}=8\Leftrightarrow2^{2x}=2^{x+y+3}\Leftrightarrow x=y+3\)

\(9^{x+y}=243.3^{5y}\Leftrightarrow3^{2x+2y}=3^{5y+5}\Leftrightarrow2x=3y+5\)

\(\left(x,y\right)=\left(-1;2\right)\)

27 tháng 10 2020

b) 4x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}\)

Và x2 + y2 = 100

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

Ta có:

\(\frac{x^2}{9}=4\Rightarrow x^2=4.9=36\Rightarrow x=6;x=-6\)

\(\frac{y^2}{16}=4\Rightarrow y^2=16.9=144\Rightarrow x=12;x=-12\)

Vậy ta có các cặp số x, y sau:

x = 6; y = 12

hoặc x = 6; y = -12

hoặc x = -6; y = 12

hoặc x = -6; y = -12

27 tháng 10 2020

d) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x^2}{2}=\frac{xy}{3}\)

Mà xy = 6

\(\Rightarrow\frac{x^2}{2}=\frac{xy}{3}=\frac{6}{3}=2\)

Ta có:

\(\frac{x^2}{2}=2\Rightarrow x^2=2.2=4\Rightarrow x=2;x=-2\)

Với x = 2, ta có:

\(\frac{2y}{3}=2\Rightarrow y=\frac{2.3}{2}=\frac{6}{2}=3\)

Với x = -2, ta có:

\(\frac{-2y}{3}=2\Rightarrow y=\frac{2.3}{-2}=\frac{-6}{2}=-3\)

Vậy có các cặp giá trị x, y sau:

x = 2; y = 3

Hoặc x = -2; y = -3