Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2x-4y}{39}=\frac{4z-3x}{26}=\frac{3y-2z}{52}\)
\(\Rightarrow\frac{39\left(2x-4y\right)}{39.39}=\frac{26\left(4z-3x\right)}{26.26}=\frac{52\left(3y-2z\right)}{52.52}\)
\(\Rightarrow\frac{78x-156y}{1521}=\frac{104z-78x}{676}=\frac{156y-104z}{2704}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{78x-156y}{1521}=\frac{104z-78x}{676}=\frac{156y-104z}{2704}=\frac{78x-156y+104z-78x+156y-104z}{1521+676+2704}=\frac{0}{4901}=0\)
Do đó: \(\hept{\begin{cases}\frac{2x-4y}{39}=0\\\frac{4z-3x}{26}=0\\\frac{3y-2z}{52}=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-4y=0\\4z-3x=0\\3y-2z=0\end{cases}}\Rightarrow\hept{\begin{cases}2x=4y\\4z=3x\\3y=2z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{2}\\\frac{z}{3}=\frac{x}{4}\\\frac{y}{2}=\frac{z}{3}\end{cases}}\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)
Đặt \(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}=k\)\(\Rightarrow\hept{\begin{cases}x=4k\\y=2k\\z=3k\end{cases}}\)
Ta có: \(A=2018-2x-11y+10z=2018-2.4k-11.2k+10.3k=2018-8k-22k+30k\)
\(A=2018-\left(8k+22k-30k\right)=2018-0=2018\)
Ta có : \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
=>\(\frac{4\left(3x-2y\right)}{16}=\frac{3\left(2z-4y\right)}{9}=\frac{2\left(4y-3z\right)}{4}\)
Hay \(\frac{12x-8y}{16}=\frac{6z-12y}{9}=\frac{8y-6z}{4}\)= \(\frac{12x-8y+6z-12y+8y-6z}{16+9+4}=0\)
+, \(\frac{12x-8y}{16}=0\)=>\(12x-8y=0\)=>\(12x=8y\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
+, \(\frac{6z-12x}{9}=0\Rightarrow6z-12x=0\Rightarrow6z=12x\Rightarrow z=2x\Rightarrow\frac{z}{4}=\frac{x}{2}\left(2\right)\)
+, \(\frac{8y-6z}{4}=0\Rightarrow8y-6z=0\Rightarrow8y=6z\Rightarrow4y=3z\Rightarrow\frac{y}{3}=\frac{z}{4}\left(3\right)\)
Từ (1) , (2) và (3) ta suy ra : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)(đpcm)
1/
\(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{4x}{12}=\frac{5y}{20}=\frac{4x-5y}{-8}\) (1)
\(\frac{x}{3}=\frac{y}{4}=\frac{3x}{9}=\frac{4y}{16}=\frac{3x+4y}{25}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{4x-5y}{-8}=\frac{3x+4y}{25}\Rightarrow\frac{4x-5y}{3x+4y}=\frac{-8}{25}\)
2/
\(M-N=3x\left(x-y\right)-\left(y-x\right)\left(y+x\right)=\)
\(=3x\left(x-y\right)+\left(x-y\right)\left(y+x\right)=\left(x-y\right)\left(4x+y\right)\)
Mà \(x-y\) chia hết cho 11 nên \(M-N\) chia hết cho 11
Cho \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
Cmr : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{16+9+4}=0\)
\(\Rightarrow3x-2y=0\)
\(\Rightarrow2z-4x=0\)
\(\Rightarrow4y-3z=0\)
Ta có: \(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\) (1)
\(2z-4x=0\Rightarrow2z=4x\Rightarrow\frac{z}{4}=\frac{x}{2}\) (2)
Từ (1) và (2) suy ra \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Rightarrowđpcm\)
\(\frac{3x-2y}{4}=\frac{2z-4y}{3}=\frac{4y-3z}{2}\)
=>\(\frac{4\left(3x-2y\right)}{4.4}=\frac{3\left(2z-4x\right)}{3.3}=\frac{2\left(4y-3z\right)}{2.2}\)
=\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
=\(\frac{\left(12x-8y\right)+\left(6z-12y\right)+\left(8y-6z\right)}{16+9+4}\)
=\(\frac{12x-8y+6z-12x+8y-6z}{29}\)
=\(\frac{\left(12x-12x\right)+\left(8y-8y\right)+\left(6z-6z\right)}{29}\)
=\(\frac{0}{29}=0\)
Ta có: \(\frac{3x-2y}{4}=0\)=> 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) (1)
\(\frac{2z-4x}{3}=0\)=> 2z = 4x => \(\frac{x}{2}=\frac{z}{4}\) (2)
Từ (1) và (2) => \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Chúc bạn học tốt!
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\Rightarrow\frac{4\left(3x-2y\right)}{4.4}=\frac{3\left(2z-4x\right)}{3.3}=\frac{2\left(4y-3z\right)}{2.2}\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng TCDTSBN ta có:
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)
\(\Rightarrow\frac{3x-2y}{4}=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
\(\frac{2z-4x}{3}=0\Rightarrow2z=4x\Rightarrow\frac{x}{2}=\frac{z}{4}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
ta có:\(\frac{3x-2y}{4}\)=\(\frac{2z-4x}{3}\)=\(\frac{4y-3z}{2}\)
=\(\frac{12x-8y}{16}\)=\(\frac{6z-12x}{9}\)=\(\frac{8y-6z}{4}\)=\(\frac{12x-8y+6z-12x+8y-6z}{16+9+4}\)
=>\(\hept{\begin{cases}3x-2y=0\\2z-4x=0\\4y-3z=0\end{cases}}\)=>\(\hept{\begin{cases}3x=2y\\2z=4x\\4y-3z\end{cases}}\)=>\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{z}{4}=\frac{x}{2}\\\frac{y}{3}=\frac{z}{4}\end{cases}}\)=>\(\hept{\begin{cases}x\\2\end{cases}}=\frac{y}{3}=\frac{z}{4}\)
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\Rightarrow\frac{4.\left(3x-2y\right)}{16}=\frac{3.\left(2z-4x\right)}{9}=\frac{2.\left(4y-3z\right)}{4}\)
\(=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{16+9+4}=\frac{0}{29}=0\)
\(\Rightarrow\begin{cases}12x-8y=0\\6z-12x=0\\8y-6z=0\end{cases}\)\(\Rightarrow\begin{cases}12x=8y\\6z=12x\\8y=6z\end{cases}\)\(\Rightarrow12x=8y=6z\)
\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)
Từ dẳng thức : \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)(sửa đề)
=> \(\frac{4.\left(3x-2y\right)}{4^2}=\frac{3\left(2z-4x\right)}{3^2}=\frac{2\left(4y-3z\right)}{2^2}\)
=> \(\frac{12x-8y}{4^2}=\frac{6z-12x}{3^2}=\frac{8y-6z}{2^2}=\frac{12x-8y+6z-12x+8y-6z}{4^2+3^2+2^2}=0\left(\text{dãy tỉ số bằng nhau}\right)\)
=> \(\hept{\begin{cases}12x=8y\\6z=12x\\8y=6z\end{cases}\Rightarrow\hept{\begin{cases}3x=2y\\2z=4x\\4y=3z\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\\\frac{y}{3}=\frac{z}{4}\end{cases}\Rightarrow}\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Leftrightarrow\text{ Đặt} \frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}}}\)
Khi đó M = 3x + 10y - 9z + 2018
= 3.2k + 10.3k - 9,4k + 2018
= 6k + 30k - 36k + 2018
= 2018
Vậy M = 2018
Mk làm lại tất cả cho dễ hiểu nha!
Từ đẳng thức : \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\Rightarrow\frac{4\left(3x-2y\right)}{4^2}=\frac{3\left(2z-4x\right)}{3^2}=\frac{2\left(4y-3x\right)}{2^2}\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}12x=8y\\6z=12x\\8y=6z\end{cases}\Rightarrow\hept{\begin{cases}3x=2y\\2z=4x\\4y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{z}{4}=\frac{x}{2}\\\frac{y}{3}=\frac{z}{4}\end{cases}}}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}}\)
Khi đó M = 3x + 10y - 9z + 2018
= 3.2k + 10.3k - 9.4k + 2018
= 6k + 30k - 36k + 2018
= 2018
Vậy M = 2018