Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
Sai thì thôi nhé!
a) \(f\left(-3\right)=\frac{2}{3}\times-3-\frac{1}{2}=-2-\frac{1}{2}=\frac{-4}{2}-\frac{1}{2}=\frac{-5}{2}\)
\(f\left(\frac{3}{4}\right)=\frac{2}{3}\times\frac{3}{4}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0\)
b) \(f\left(x\right)=\frac{1}{2}\Leftrightarrow\frac{2}{3}\times x-\frac{1}{2}=\frac{1}{2}\Leftrightarrow\frac{2}{3}\times x=1\Leftrightarrow x=1:\frac{2}{3}\Leftrightarrow x=1\times\frac{3}{2}\Leftrightarrow x=\frac{3}{2}\)
c)\(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\left(1\right)\)
\(A\left(\frac{3}{4};-\frac{1}{2}\right)\)
\(A\left(\frac{3}{4};\frac{-1}{2}\right)\Rightarrow\hept{\begin{cases}x_A=\frac{3}{4}\\y_A=\frac{-1}{2}\end{cases}}\)
Thay \(x_A=\frac{3}{4}\)vào (1) ta có:
\(y=f\left(x\right)=\frac{2}{3}\times\frac{3}{4}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0\ne y_A\)
Vậy điểm A không thuộc đồ thì hàm số \(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\)
\(B\left(0,5;-2\right)\)
\(B\left(0,5;-2\right)\Rightarrow\hept{\begin{cases}x_B=0,5\\y_B=-2\end{cases}}\)
Thay \(x_B=0,5\)vào (1) ta có:
\(y=f\left(x\right)=\frac{2}{3}\times0,5-\frac{1}{2}=\frac{1}{3}-\frac{1}{2}=\frac{2}{6}-\frac{3}{6}=\frac{-1}{6}\ne y_B\)
Vậy điểm B không thuộc đồ thị hàm số \(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\)
a) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{5}\)
\(\Leftrightarrow\frac{2015}{a+b}+\frac{2015}{b+c}+\frac{2015}{c+a}=403\)
\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=403\)
\(\Leftrightarrow3+\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=403\)
\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=400\)
Suy ra:
\(\left(3a^2-b^2\right)4=\left(a^2+b^2\right)3\)
=> \(12a^2-4b^2=3a^2+3b^2\)
=> \(12a^2-3a^2=3b^2+4b^2\)
=> \(9a^2=7b^2=>\frac{a^2}{b^2}=\left(\frac{a}{b}\right)^2=\frac{7}{9}=>\frac{a}{b}=\sqrt{\frac{7}{9}}\)
Vay: \(\frac{a}{b}=\sqrt{\frac{7}{9}}\)
tick mình nhaNguyễn Hương Ly