\(\frac{2x-4y}{2}\)=\(\frac{4z-3x}{2}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

mình cũng k biết

4 tháng 6 2018

Ca thi thanh hoa k bít j thì đừng nói linh tinh

5 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)

=> \(\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{4}=9\\\frac{z}{-4}=9\end{cases}}\)  =>   \(\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)

Vậy ...

a, ÁP DỤNG DÃY TỈ SỐ BĂNG NHAU TA CÓ

\(\frac{x}{2}=\frac{y}{3}=\frac{x}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)

\(\Rightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)

4 tháng 2 2018

Ta có \(\frac{x}{3}=\frac{y}{4}\)\(\Rightarrow\)\(x=\frac{y}{4}.3\)tương tự với vế còn lại ta có \(z=\frac{y}{5}.6\)thay vào đề ta có:\(\frac{2.\frac{y}{4}.3+3.y+4.\frac{y}{4}.6}{3.\frac{y}{4}.3+4.y+5.\frac{y}{4}.6}\)=\(\frac{\frac{3}{2}y+3y+6.y}{\frac{9}{4}.x+4.y+\frac{15}{2}y}=\frac{\left(\frac{3}{2}+3+6\right).y}{\left(\frac{9}{4}+4+15\right).y}=\frac{\frac{21}{2}}{\frac{85}{4}}\)(rút gọn y)=\(\frac{42}{85}\)

4 tháng 2 2018

Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{y}{20}=\frac{z}{24}\)\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=\)\(\frac{2x+3y+4z}{3x+4y+5z}=\frac{30+60+96}{45+80+120}=\frac{186}{245}\)

\(\)

21 tháng 7 2017

B)ĐỀ BÀI \(\Leftrightarrow\left(\frac{X}{2}\right)^3=\frac{X}{2}.\frac{Y}{3}.\frac{Z}{5}=\frac{810}{30}=27\\ \)

             \(\Leftrightarrow\frac{X}{2}=3\Rightarrow X=6\)

 TỪ ĐÓ SUY RA Y=9;Z=15

14 tháng 10 2017

a) Do \(2x=3y=-2z\) nên \(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1-1+\left(-2\right)}=\frac{48}{-2}=-24\)    ( do 2x - 3y + 4z = 48 )
Khi đó: 
\(\frac{2x}{1}=-24\)\(\Rightarrow2x=-24\)\(\Rightarrow x=\frac{-24}{2}=-12\)
\(\frac{3y}{1}=-24\)\(\Rightarrow3y=-24\)\(\Rightarrow y=\frac{-24}{3}=-8\)
\(\frac{4z}{-2}=-24\)\(\Rightarrow-2z=-24\)\(\Rightarrow z=\frac{-24}{-2}=12\)
Vậy x = -12 ; y = -8 ; z = 12

14 tháng 10 2017

Vũ Quang Vinh: tks bạn nhiềuu

16 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{-10}=\frac{y}{6}=\frac{z}{3}\) => \(\frac{2x}{-20}=\frac{3y}{18}=\frac{2z}{6}=\frac{2x+3y-2z}{-20+18-6}=\frac{16}{-8}=-2\)

=> \(\hept{\begin{cases}\frac{x}{-10}=-2\\\frac{y}{6}=-2\\\frac{z}{3}=-2\end{cases}}\) => \(\hept{\begin{cases}x=-2.\left(-10\right)=20\\y=-2.6=-12\\z=-2.3=-6\end{cases}}\)

Vậy ...

b) Ta có: -2x = 5y => x/5 = y/-2

Áp dụng t/c của dãy tỉ số bằng nhau , ta có:

  \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)

=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)

Vậy ...

16 tháng 7 2019

a. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{-10}=\frac{y}{6}=\frac{z}{3}=\frac{2x+3y-2z}{-20+18-6}=\frac{16}{-8}=-2\)

=> x = -2.(-10) = 20

     y = -2.6 = -12

     z = -2.3 = -6

b. -2x = 5y => \(\frac{x}{5}=\frac{y}{-2}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5+\left(-2\right)}=\frac{30}{3}=10\)

=> x = 10.5 = 50

     y = 10.(-2) = -20

c. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{-3}=\frac{y}{-7}=\frac{2x+4y}{-6+\left(-28\right)}=\frac{68}{-34}=-2\)

=> x = -2.(-3) = 6

     y = -2.(-7) = 14

d. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{1}=\frac{y}{6}=\frac{z}{3}=\frac{2x+3y-4z}{2+18-12}=\frac{-24}{8}=-3\)

=> x = -3

     y = -3.6 = -18

     z = -3.3 = -9

30 tháng 9 2019

a)\(2x=3y,4y=5z\Leftrightarrow\frac{x}{3}=\frac{y}{2},\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{x}{15}=\frac{y}{10},\frac{y}{10}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\Leftrightarrow\frac{2x}{30}=\frac{y}{10}=\frac{2z}{16}\)

ADTCDTS=NHAU TA CÓ

\(\frac{2x}{30}=\frac{y}{10}=\frac{2z}{16}=\frac{2x+y-2z}{30+10-16}=\frac{24}{24}=1\)

x=15

y=10

z=8

b) Ta có BCNN(2,3,4)=12

\(\Rightarrow\frac{2x}{12}=\frac{3x}{12}=\frac{4z}{12}\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\Leftrightarrow\frac{x^2}{36}=\frac{y^2}{16}=\frac{z^2}{9}\)

ADTCDTS=NHAU TA CÓ

\(\frac{x^2}{36}=\frac{y^2}{16}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{36+16+9}=\frac{61}{61}=1\)

\(\frac{x^2}{36}=1\Rightarrow x^2=36\Rightarrow x=+_-6\)

\(\frac{y^2}{16}=1\Rightarrow x=+_-4\)

\(\frac{z^2}{9}=1\Rightarrow z=+_-3\)

TUỰ KẾT LUẬN NHA BẠN

C)\(\frac{x-6}{3}=\frac{y-8}{4}=\frac{z-10}{5}\Leftrightarrow\frac{x^2-36}{9}=\frac{y^2-64}{16}=\frac{z^2-100}{25}\)

ADTCDTS=NHAU TA CÓ

\(\frac{x^2-36}{9}=\frac{y^2-64}{16}=\frac{z^2-100}{25}=\frac{\left(x^2-36\right)+\left(y^2-64\right)+\left(z^2-100\right)}{9+16+25}\)

\(=\frac{x^2-36+y^2-64+z^2-100}{50}=\frac{\left(x^2+y^2+z^2\right)-\left(36-64-100\right)}{50}\)

\(=\frac{\left(x^2+y^2+z^2\right)-\left(36+64+100\right)}{50}=\frac{200-200}{50}=\frac{0}{50}=0\)

\(\Rightarrow\frac{x^2-36}{9}=0\Rightarrow x^2-36=0\Rightarrow x^2=36\Rightarrow x=+_-6\)

\(\frac{y^2-64}{16}=0\Rightarrow y^2-64=0\Rightarrow y^2=64\Rightarrow y==+_-8\)

\(\frac{z^2-100}{25}=0\Rightarrow z^2-100=0\Rightarrow z^2=100\Rightarrow z=+_-10\)

TỰ KẾT LUẠN NHA