\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

hoàng thái giám

Ta có:\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow\frac{1}{c}.2=\frac{1}{a}+\frac{1}{b}\)

\(\Rightarrow\frac{2}{c}=\frac{b}{a.b}+\frac{a}{a.b}\)

\(\Rightarrow\frac{2}{c}=\frac{a+b}{a.b}\)

\(\Rightarrow2.a.b=c\left(a+b\right)\)

\(\Rightarrow a.b+a.b=ca+cb\)

\(\Rightarrow ab-cb=ac-ab\)

\(\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)

hok tốt!!

30 tháng 11 2018

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)(ĐK:a,b,c khác 0)

TH1: a+b+c=0=> a=-(b+c)=> b=-(a+c)=> c=-(a+b)

\(\Rightarrow B=\left(\frac{a-a-c}{a}\right)\left(\frac{c-b-c}{c}\right)\left(\frac{b-a-b}{b}\right)=\frac{-c}{a}.\left(-\frac{b}{c}\right).\left(-\frac{a}{b}\right)=-1\)

xét a+b+c khác 0

=> a=b=c

=> \(B=\left(1+\frac{a}{a}\right).\left(1+\frac{b}{b}\right).\left(1+\frac{c}{c}\right)=2^3=8\)

Vậy B=-1 hay B=8

p/s: bài này gây khá nhiều tranh cãi :> 

8 tháng 12 2019

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow\frac{1}{c}.2=\frac{a}{ab}+\frac{b}{ab}\)

\(\Rightarrow2c=\frac{a+b}{ab}\)

\(\Rightarrow2ab=\left(a+b\right)c\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ab-bc=ac-bc\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

với a,b,c khác 0 và b khác c

đpcm.

20 tháng 9 2019

a) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{5}\)

\(\Leftrightarrow\frac{2015}{a+b}+\frac{2015}{b+c}+\frac{2015}{c+a}=403\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=403\)

\(\Leftrightarrow3+\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=403\)

\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=400\)

20 tháng 9 2019

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)

Thay vào rồi c/m nhé

14 tháng 9 2019

b)Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)

14 tháng 9 2019

\(a^5-a=a\left(a^4-1\right)\)

\(=a\left(a^2+1\right)\left(a^2-1\right)\)

\(=a\left(a^2+1\right)\left(a-1\right)\left(a+1\right)\)

\(=a\left(a^2-4+5\right)\left(a-1\right)\left(a+1\right)\)

\(=a\left(a^2-4\right)\left(a-1\right)\left(a+1\right)+5a\left(a+1\right)\left(a-1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a+1\right)\left(a-1\right)\)

Tích 5 số nguyên liên tiếp chia hết cho 5 nên \(a^5-a⋮5\)

30 tháng 7 2019

#)Giải :

Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)

Lại có : \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(2\right)\)

\(\Rightarrowđpcm\)

9 tháng 12 2018

Bài 1:

Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c

<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1

Sai rồi em ơi 2 trường hợp cơ 

+, bằng -1

+, bằng 2