Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn phá đảo BDT rồi làm làm gì nữa nhường cho người khác làm nữa chứ :v
Câu 1:
Áp dụng BĐT Cauchy ta có:
\(P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}=\frac{1}{(x^2+y^2)+(y^2+1)+2}+\frac{1}{(y^2+z^2)+(z^2+1)+2}+\frac{1}{(z^2+x^2)+(x^2+1)+2}\)
\(\leq \frac{1}{2xy+2y+2}+\frac{1}{2yz+2z+2}+\frac{1}{2zx+2x+2}\)
hay \(P\leq \frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)(1)\)
Do $xyz=1$ nên:
\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{1}{xy+y+1}+\frac{xy}{xy.yz+xyz+xy}+\frac{y}{yzx+yx+y}\)
\(=\frac{1}{xy+y+1}+\frac{xy}{y+1+xy}+\frac{y}{1+yx+y}=\frac{1+xy+y}{1+xy+y}=1(2)\)
Từ \((1);(2)\Rightarrow P\leq \frac{1}{2}.1=\frac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z=1$
![](https://rs.olm.vn/images/avt/0.png?1311)
Không mất tính tổng quát giả sử \(a\ge b\ge c\). Khi đó, ta dễ dàng có được \(a^n\ge b^n\ge c^n\)và \(\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\)
Áp dụng bất đẳng thức Chebyshev, ta có: \(\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\ge\frac{1}{3}\left(a^n+b^n+c^n\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
P/s: Đây là một bước nhỏ trong một cách chứng minh dạng tổng quát của bđt Nesbit
![](https://rs.olm.vn/images/avt/0.png?1311)
3a) ta có \(\frac{a^2}{a+b}=a-\frac{ab}{a+b}>=a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)
vì \(a,b>0,a+b>=2\sqrt{ab}nên\frac{ab}{a+b}< =\frac{ab}{2\sqrt{ab}}\)
tương tự \(\frac{b^2}{b+c}=b-\frac{bc}{b+c}>=b-\frac{bc}{2\sqrt{bc}}=b-\frac{\sqrt{bc}}{2}\)
tương tự \(\frac{c^2}{c+a}=c-\frac{ca}{c+a}>=c-\frac{ca}{2\sqrt{ca}}=c-\frac{\sqrt{ca}}{2}\)
cộng từng vế BĐT ta được \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ca}}{2}=\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}\left(1\right)\)
giả sử \(\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}>=\frac{a+b+c}{2}\)
<=> \(2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=a+b+c\)
<=> \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=0\)
<=> \(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}>=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)
(đúng với mọi a,b,c >0) (2)
(1),(2)=> \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=\frac{a+b+c}{2}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT quen thuộc \(a^2+b^2+c^2\ge ab+ac+bc\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)
\(\Rightarrow\left(a+b+c\right)^2\ge3abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3abc\left(a+b+c\right)\)
\(\Rightarrow a+b+c\ge3abc\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Đề bài bị ngược dấu
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\Rightarrow3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Rightarrow4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-3\le0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le1\)
\(\sum\frac{1}{a+a+a+a+b+c}\le\frac{1}{36}\sum\left(\frac{4}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{6}\)
Dấu "=" xảy ra khi \(a=b=c=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}-7\le0\)
Đặt \(P=\frac{a}{c}+\frac{c}{a}+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}-7\)
Không mất tỉnh tổng quát, giả sử \(a\le b\le c\Rightarrow\left(a-b\right)\left(b-c\right)\ge0\)
\(\Rightarrow ab+bc\ge b^2+ac\Rightarrow\left\{{}\begin{matrix}\frac{a}{c}+1\ge\frac{b}{c}+\frac{a}{b}\\1+\frac{c}{a}\ge\frac{b}{a}+\frac{c}{b}\end{matrix}\right.\)
\(\Rightarrow\frac{a}{c}+\frac{c}{a}+2\ge\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}\)
\(\Rightarrow P\le\frac{a}{c}+\frac{c}{a}+\frac{a}{c}+\frac{c}{a}+2-7=2\left(\frac{a}{c}+\frac{c}{a}\right)-5\)
Do \(1\le a\le c\le2\Rightarrow1\le\frac{c}{a}\le2\)
Đặt \(\frac{c}{a}=x\Rightarrow1\le x\le2\)
\(\Rightarrow P\le2\left(x+\frac{1}{x}\right)-5=\frac{2x^2-5x+2}{x}=\frac{\left(2x-1\right)\left(x-2\right)}{x}\le0\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;1;2\right);\left(1;2;2\right)\) và các hoán vị
=\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
=3+\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
áp dụng hệ quả của bđt côsi \(\frac{a}{b}+\frac{b}{a}\ge2\)với a,b >0 ta có BĐT cuối cùng luôn đúng
vậy .....
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=-\frac{a+b}{c\left(a+b+c\right)}\)
\(TH1:a+b=0\Rightarrow a=-b\)
Mà n lẻ nên \(a^n=-b^n\)
\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{c^n}\)
\(\Rightarrow\frac{1}{a^n+b^n+c^n}=\frac{1}{c^n}\)\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
\(TH2:a+b\ne0\Rightarrow ab=-c\left(a+b+c\right)\)
\(\Rightarrow ab+bc+ca+c^2=0\Rightarrow\left(a+c\right)\left(b+c\right)=0\)\(\Rightarrow\orbr{\begin{cases}a=-c\\b=-c\end{cases}}\Rightarrow\orbr{\begin{cases}a^n=-c^n\\b^n=-c^n\end{cases}}\)(n lẻ)
\(\cdot a^n=-c^n\Rightarrow\)\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{b^n}\) ; \(\Rightarrow\frac{1}{a^n+b^n+c^n}=\frac{1}{b^n}\)\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
*\(b^n=-c^n\)\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n}\) ; \(\Rightarrow\frac{1}{a^n+b^n+c^n}=\frac{1}{a^n}\)\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
Vậy suy ra đpcm
(mik ms lp 8 thôi nên nếu mà sai mong pn thông cảm)
Khôi Bùi chưa chắc đâu nha bạn, đầy người không biết ra...