K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)

7 tháng 3 2016

bình phương 2 vế của 1/a + 1/b +1/c =2 ta đk:

1/a^2 +1/b^2 + 1/c^2 + 2 x (a+b+c) / abc =4

1/a^2 + 1/b^2 + 1/c^2 +2 =4

=> 1/a^2 + 1/b^2 + 1/c^2 =2

6 tháng 3 2016

undefined olm đã có 

4 tháng 2 2016

Hỏi đáp Toán

4 tháng 5 2019

Đặt x=a+b+c(x>3)

Ta có \(\left(x-6\right)^2\ge0\)(dấu '=' xảy ra khi x=6 hay a+b+c=6)\(\Leftrightarrow x^2-12x+36\ge0\Leftrightarrow x^2\ge12x-36\Leftrightarrow x^2\ge12\left(x-3\right)\Leftrightarrow\frac{x^2}{x-3}\ge12\)(1)

Áp dụng bđt \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)(dấu '=' xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\))

Ta có \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}=\frac{x^2}{x-3}\)(2)

Từ (1) và (2)\(\Rightarrow\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)(đpcm)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}\frac{a}{b-1}=\frac{b}{c-1}=\frac{c}{a-1}\\a+b+c=6\end{matrix}\right.\)\(\Leftrightarrow a=b=c=2\)

20 tháng 9 2015

hoc24.net giúp em với

4 tháng 3 2018

có sai đề ko

mk làm ko đc

4 tháng 3 2018

mk nghĩ đây là đề đúng

\(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\ge\dfrac{3}{2}\)

Ta có:

\(\left\{{}\begin{matrix}\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\\\dfrac{b}{1+c^2}=b-\dfrac{bc^2}{1+c^2}\\\dfrac{c}{1+a^2}=c-\dfrac{ca^2}{1+a^2}\end{matrix}\right.\)

Áp dụng bđt AM-GM ta có:

\(\dfrac{ab^2}{1+b^2}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\)

\(\Rightarrow a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab}{2}\) (1)

C/m tg tự ta có:

\(\left\{{}\begin{matrix}b-\dfrac{bc^2}{1+c^2}\ge b-\dfrac{bc}{2}\\c-\dfrac{ca^2}{1+a^2}\ge c-\dfrac{ac}{2}\end{matrix}\right.\) (2)

Chứng minh điều sau:\(ab+bc+ca\le3\)

Ta có:

\((a+b+c)^2\ge3(ab+bc+ca)\)

\(\Leftrightarrow9\ge3ab+3bc+3ca\)

\(\Leftrightarrow ab+bc+ca\le3\)

Từ (1) và (2)

\(\Rightarrow VT\ge a+b+c-\dfrac{ab+bc+ca}{2}\)

\(ab+bc+ca\le3\)

Nên \(VT\ge a+b+c-\dfrac{ab+bc+ca}{2}\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)

=> ĐPCM

Bài 3:

Do a và b đều không chia hết cho 3 nhưng khi chia cho 3 thì có cùng số dư nên\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\\\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\end{matrix}\right.\)

TH1:\(\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\)

\(\Rightarrow ab-1=\left(3n+1\right)\left(3m+1\right)-1\)

\(\Rightarrow ab-1=9nm+3m+3n+1-1=9nm+3m+3n⋮3\) nên là bội của 3 (đpcm)

TH2:\(\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\)

\(\Rightarrow ab-1=\left(3n+2\right)\left(3m+2\right)-1\)

\(\Rightarrow ab-1=9nm+6m+6n+4-1=9nm+6m+6n+3⋮3\) nên là bội của 3 (đpcm)

Vậy ....

Bài 2:

\(B=\frac{1}{2010.2009}-\frac{1}{2009.2008}-\frac{1}{2008.2007}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow B=\frac{1}{2010.2009}-\left(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

Đặt A=\(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(\Rightarrow A=\frac{2009-2008}{2009.2008}+\frac{2008-2007}{2008.2007}+...+\frac{3-2}{3.2}+\frac{2-1}{2.1}\)

\(\Rightarrow A=\frac{2-1}{2.1}+\frac{3-2}{3.2}+...+\frac{2008-2007}{2008.2007}+\frac{2009-2008}{2009.2008}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2008}-\frac{1}{2009}\)

\(\Rightarrow A=1-\frac{1}{2009}\)

\(\Rightarrow B=\frac{1}{2010.2009}-A=\frac{1}{2010.2009}-\left(1-\frac{1}{2009}\right)\)

\(\Rightarrow B=\frac{1}{2010.2009}+\frac{1}{2009}-1=\frac{2011}{2010.2009}-1\)