\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0,a+b+c=abc\)
CHỨNG MINH 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

I think that we have to prove \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=-2\)

We have \(a+b+c=abc\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

We have \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=0\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=0\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=0\)( Because \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\))

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=-2\)

So...

26 tháng 3 2016

a) Ta có 

\(a^2+4b^2=12ab\Leftrightarrow\left(a+2b\right)^2=16ab\)

Do a,b dương nên \(a+2b=4\sqrt{ab}\) khi đó lấy logarit cơ số 10 hai vế ta được :

\(lg\left(a+2b\right)=lg4+\frac{1}{2}lg\left(ab\right)\)

hay 

\(lg\left(a+2b\right)-2lg2=\frac{1}{2}\left(lga+lgb\right)\)

 

b) Giả sử a,b,c đều dương khác 0. Để biểu diễn c theo a, ta rút lgb từ biểu thức \(a=10^{\frac{1}{1-lgb}}\) và thế vào biểu thức \(b=10^{\frac{1}{1-lgc}}\). Sau khi lấy logarit cơ số 10 2 vế, ta có :

\(a=10^{\frac{1}{1-lgb}}\Rightarrow lga=\frac{1}{1-lgb}\Rightarrow lgb=1-\frac{1}{lga}\)

Mặt khác , từ \(b=10^{\frac{1}{1-lgc}}\) suy ra \(lgb=\frac{1}{1-lgc}\) Do đó :

\(1-\frac{1}{lga}=\frac{1}{1-lgc}\)

\(\Rightarrow1-lgx=\frac{lga}{lga-1}=1+\frac{1}{lga-1}\)

\(\Rightarrow lgc=\frac{1}{1-lga}\)

Từ đó suy ra : \(c=10^{\frac{\frac{1}{1-lga}}{ }}\)

26 tháng 2 2021

Theo bđt Cauchy - Schwart ta có:

\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)

\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)

Đặt \(ab+bc+ca=x;abc=y\).

Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)

\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )

Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1

26 tháng 2 2021

sai rồi nhé bạn 

26 tháng 3 2016

a) \(A=\left[\left(\frac{1}{5}\right)^2\right]^{\frac{-3}{2}}-\left[2^{-3}\right]^{\frac{-2}{3}}=5^3-2^2=121\)

b) \(B=6^2+\left[\left(\frac{1}{5}\right)^{\frac{3}{4}}\right]^{-4}=6^2+5^3=161\)

c) \(C=\frac{a^{\sqrt{5}+3}.a^{\sqrt{5}\left(\sqrt{5}-1\right)}}{\left(a^{2\sqrt{2}-1}\right)^{2\sqrt{2}+1}}=\frac{a^{\sqrt{5}+3}.a^{5-\sqrt{5}}}{a^{\left(2\sqrt{2}\right)^2-1^2}}\)

                              \(=\frac{a^{\sqrt{5}+3+5-\sqrt{5}}}{a^{8-1}}=\frac{a^8}{a^7}=a\)

d) \(D=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\)

        \(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left[1-2\sqrt{\frac{b}{a}}+\left(\sqrt{\frac{b}{a}}\right)^2\right]\)

        \(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left(1-\sqrt{b}a\right)^2\)

        

1) Trong không gian Oxyz, cho các điểm M(2;1;4),N(5;0;0),P(1;-3;1). Gọi I(a,b,c) là tâm của mặt cầu tiếp xúc với mặt phẳng (Oyz) đồng thời đi qua các điểm M,N,P. Tìm c biết a+b+c<5 2) Trong không gian Oxyz, cho đường thẳng d :\(\frac{x+1}{2}\)= \(\frac{y}{1}\)=\(\frac{z-2}{-1}\) và 2 điểm A(-1;3;1), B(0;2;-1). Gọi C(m,n,p) là điểm thuộc d sao cho diện tích tam giác ABC bằng \(2\sqrt{2}\). Giá trị của tổng m+n+p bằng ?? 3) Trong...
Đọc tiếp

1) Trong không gian Oxyz, cho các điểm M(2;1;4),N(5;0;0),P(1;-3;1). Gọi I(a,b,c) là tâm của mặt cầu tiếp xúc với mặt phẳng (Oyz) đồng thời đi qua các điểm M,N,P. Tìm c biết a+b+c<5

2) Trong không gian Oxyz, cho đường thẳng d :\(\frac{x+1}{2}\)= \(\frac{y}{1}\)=\(\frac{z-2}{-1}\) và 2 điểm A(-1;3;1), B(0;2;-1). Gọi C(m,n,p) là điểm thuộc d sao cho diện tích tam giác ABC bằng \(2\sqrt{2}\). Giá trị của tổng m+n+p bằng ??

3) Trong không gian Oxyz, cho ba đường thẳng d :\(\frac{x}{1}\)=\(\frac{y}{1}\)=\(\frac{z+1}{-2}\); \(\Delta_1\): \(\frac{x-3}{2}\)=\(\frac{y}{1}\)=\(\frac{z-1}{1}\)\(\Delta_2\): \(\frac{x-1}{1}\)=\(\frac{y-2}{2}\)=\(\frac{z}{1}\). Đường thẳng \(\Delta\) vuông góc với d đồng thời cắt \(\Delta_1\), \(\Delta_2\) tương ứng tại H, K sao cho độ dài HK nhỏ nhất. Biết rằng \(\Delta\) có một vecto chỉ phương là \(\overrightarrow{u}\)=(h;k;1). Giá trị của h-k bằng

3
NV
6 tháng 5 2019

Câu 1:

\(\overrightarrow{MN}=\left(3;-1;-4\right)\Rightarrow\) pt mặt phẳng trung trực của MN:

\(3\left(x-\frac{7}{2}\right)-\left(y-\frac{1}{2}\right)-4\left(z-2\right)=0\Leftrightarrow3x-y-4z-2=0\)

\(\overrightarrow{PN}=\left(4;3;-1\right)\Rightarrow\) pt mp trung trực PN: \(4x+3y-z-7=0\)

\(\Rightarrow\) Phương trình đường thẳng giao tuyến của 2 mp trên: \(\left\{{}\begin{matrix}x=1+t\\y=1-t\\z=t\end{matrix}\right.\)

\(\Rightarrow I\left(1+c;1-c;c\right)\) \(\Rightarrow\overrightarrow{NI}=\left(c-4;1-c;c\right)\)

\(d\left(I;\left(Oyz\right)\right)=IN\Rightarrow\left|1+c\right|=\sqrt{\left(c-4\right)^2+\left(1-c\right)^2+c^2}\)

\(\Leftrightarrow\left(c+1\right)^2=3c^2-10c+17\)

\(\Leftrightarrow2c^2-12c+16=0\Rightarrow\left[{}\begin{matrix}c=4\\c=2\end{matrix}\right.\)

\(a+b+c< 5\Rightarrow\left(1+c\right)+\left(1-c\right)+c< 5\Rightarrow c< 3\Rightarrow c=2\)

NV
6 tháng 5 2019

Câu 2:

Phương trình tham số d: \(\left\{{}\begin{matrix}x=-1+2t\\y=t\\z=2-t\end{matrix}\right.\) \(\Rightarrow C\left(-1+2n;n;2-n\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(2n;n-3;1-n\right)\\\overrightarrow{AB}=\left(1;-1;-2\right)\end{matrix}\right.\) \(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(3n-7;-3n-1;3n-3\right)\)

\(\Rightarrow S_{ABC}=\frac{1}{2}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right]\right|=2\sqrt{2}\)

\(\Leftrightarrow\sqrt{\left(3n-7\right)^2+\left(-3n-1\right)^2+\left(3n-3\right)^2}=4\sqrt{2}\)

\(\Leftrightarrow27n^2-54n+27=0\Rightarrow n=1\)

\(\Rightarrow C\left(1;1;1\right)\Rightarrow m+n+p=3\)

6 tháng 5 2016

Khử b từ các đẳng thức giả thiết ta có :

\(a=10^{1-\frac{1}{lgb}}\Rightarrow lga=\frac{1}{1-lgb}\Rightarrow1-lgb=\frac{1}{lga}\Rightarrow lgb=1-\frac{1}{lga}\)  (1)

\(b=10^{1-\frac{1}{lgc}}\Rightarrow lgb=\frac{1}{1-lgc}\)  (2)

Từ (1) và (2) suy ra :

\(1-\frac{1}{lga}=\frac{1}{1-lgc}\Rightarrow1-lgc=\frac{lga}{lga-1}=1+\frac{1}{lga-1}\)

                        \(\Rightarrow lgc=\frac{1}{1-lga}\Rightarrow c=10^{\frac{1}{1-lga}}\)

Vậy với \(a=10^{1-\frac{1}{lgb}};b=10^{1-\frac{1}{lgc}}\Rightarrow c=10^{\frac{1}{1-lga}}\)

20 tháng 7 2019

Em chỉ giải ra được 1 TH dấu bằng thôi: a = b = c (còn trường hợp a = b; c=0 và các hoán vị thì em chịu, vì khi xét dấu = trong bđt thì em chỉ xảy ra 1 th)

Áp dụng BĐT Cauchy-Schwarz dạng Engel;

\(VT\ge\frac{16}{a^2+b^2+c^2+\left(a+b+c\right)^2}\ge\frac{16}{\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)^2}\)\(=\frac{12}{\left(a+b+c\right)^2}\) (đpcm)

Đẳng thức xảy ra khi a = b = c

20 tháng 7 2019

hay là có khi nào em xét dấu đẳng thức sai ko nhỉ? :))