Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
Bạn đã làm được rồi nhưng mình vẫn xin phép up lời giải nếu ai cần tham khảo:
Do $abc=1$ nên tồn tại $x,y,z>0$ sao cho $(a,b,c)=(\frac{x}{y}, \frac{y}{z}, \frac{z}{x})$
Khi đó, bài toán trở thành:
Cho $x,y,z>0$. CMR $A=\frac{y}{2y+x}+\frac{z}{2z+y}+\frac{x}{2x+z}\leq 1$
Thật vậy:
\(2A=\frac{2y}{2y+x}+\frac{2z}{2z+y}+\frac{2x}{2x+z}=1-\frac{x}{2y+x}+1-\frac{y}{2z+y}+1-\frac{z}{2x+z}\)
\(=3-\left(\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\right)\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}=\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xz}\geq \frac{(x+y+z)^2}{x^2+2xy+y^2+2yz+z^2+2xz}=1\)
\(\Rightarrow 2A\leq 3-1=2\Rightarrow A\leq 1\) (đpcm)
Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$
Vũ Minh Tuấn, HISINOMA KINIMADO, tth, Nguyễn Ngọc Linh, Hoàng Tử Hà, Aki Tsuki, @Akai Haruma,
@Nguyễn Việt Lâm
giúp e vs ạ!
thanks trước
\(\Leftrightarrow\frac{2}{2+a}+\frac{2}{2+b}+\frac{2}{2+c}\le2\)
\(\Leftrightarrow\frac{a}{2+a}+\frac{b}{2+b}+\frac{c}{2+c}\ge1\)
Đặt \(\left(a;b;c\right)=\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\)
\(\Rightarrow P=\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}=\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2zx}\)
\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c=1\)
bài này đùng Shinra nhé
ưu điểm của shinra : rất khó tìm ra lỗi sai , nếu vừa nói vừa làm thì có thể thầy cô cũng ko nhận ra :)
nhược điểm : nếu bị để ý kĩ thì SM luôn đấy :)
áp dụng BDT cô si ta có :
\(a+1+1\ge3\sqrt[3]{a}.\) tương tự với các mẫu còn lại
vì nó năm ở dưới mẫu dấu > thành dấu <
\(vt\le\frac{1}{3\sqrt[3]{a}}+\frac{1}{3\sqrt[3]{b}}+\frac{1}{3\sqrt[3]{c}}.\)
\(abc=1\Leftrightarrow a=\frac{1}{bc}\)
\(VT\le\frac{1}{\frac{3}{\sqrt[3]{bc}}}+\frac{1}{\frac{3}{\sqrt[3]{ac}}}+\frac{1}{\frac{3}{\sqrt[3]{ab}}}=\frac{\sqrt[3]{bc}+\sqrt[3]{ac}+\sqrt[3]{ab}}{3}\)
có \(a+b+C\ge3\sqrt[3]{abc}=3\) ( abc=1) ( nhớ kĩ cái này là chìa khóa để rứt điểm bài này ko được quên nha )
nhân cả tử cả mẫu cho 3 ta được
\(VT\le\frac{3\sqrt[3]{bc}+3\sqrt[3]{ac}+3\sqrt[3]{ab}}{9}\)
\(3\sqrt[3]{b.c.1}\le\left(b+c+1\right)\) tương tự với các số hạng còn lại ta được
đến đây ta dùng Shinra nhé
\(VT\le\frac{2\left(a+b+c\right)+3}{9}=\frac{6+3}{9}=1\)
Dề sai. Cho \(a=c=0,b=\sqrt{2}\) thì được
\(0+\frac{2}{\sqrt{2}+1}+\frac{1}{3}\approx1,162>1\)
a) Ta có BĐT:
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
Tương tự cho 2 bất đẳng thức còn lại rồi cộng theo vế:
\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=VP\)
Khi \(a=b=c\)
câu này ở trong câu trả lời cảu tớ ấy vào phần hỏi đáp bạn tìm câu hỏi của tớ
đề câu 78
\(\sqrt{x\left(x+2\right)}+\sqrt{2x-1}=\sqrt{\left(x+1\right)\left(3x+1\right)}\)
b2 \(\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}=\sqrt{x}.\sqrt{1-\frac{1}{x}}+\sqrt{y}.\)\(\sqrt{y}.\sqrt{1-\frac{1}{y}}+\sqrt{z}.\sqrt{1-\frac{1}{z}}\)rồi dung bunhia là xong
A= \(\frac{1}{a^3}\)+ \(\frac{1}{b^3}\)+ \(\frac{1}{c^3}\)+ \(\frac{ab^2}{c^3}\)+ \(\frac{bc^2}{a^3}\)+ \(\frac{ca^2}{b^3}\)
Svacxo:
3 cái đầu >= \(\frac{9}{a^3+b^3+c^3}\)
3 cái sau >= \(\frac{\left(\sqrt{a}b+\sqrt{c}b+\sqrt{a}c\right)^2}{a^3+b^3+c^3}\)
Cô-si: cái tử bỏ bình phương >= 3\(\sqrt{abc}\)
=> cái tử >= 9abc= 9 vì abc=1
Còn lại tự làm
Chỉ có biến đổi tương đương:
\(\frac{x^2+y^2+2}{\left(1+x^2\right)\left(1+y^2\right)}\le\frac{2}{1+xy}\Leftrightarrow\left(1+xy\right)\left(x^2+y^2+2\right)\le2\left(1+x^2\right)\left(1+y^2\right)\)
\(\Leftrightarrow x^2+y^2+2+x^3y+xy^3+2xy\le2+2x^2+2y^2+2x^2y^2\)
\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2-2xy+y^2\right)\le0\)
\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\le0\) (luôn đúng với mọi \(xy\le1\))
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=y\\xy=1\end{matrix}\right.\)
b/ Tính chất của z ở câu b là gì bạn? z bất kì là ko được đâu, hơn nữa mẫu số của vế phải thấy hơi kì quặc
Ta có : \(\frac{1}{c+2}=1-\frac{1}{a+2}-\frac{1}{b+2}=\left(\frac{1}{2}-\frac{1}{a+2}\right)+\left(\frac{1}{2}-\frac{1}{b+2}\right)\)
\(=\frac{a}{2\left(a+2\right)}+\frac{b}{2\left(b+2\right)}\ge\sqrt{\frac{ab}{\left(a+2\right)\left(b+2\right)}}\)
tương tự : \(\frac{1}{b+2}\ge\sqrt{\frac{ca}{\left(c+2\right)\left(a+2\right)}}\)
\(\frac{1}{a+2}\ge\sqrt{\frac{bc}{\left(b+2\right)\left(c+2\right)}}\)
Nhân vế theo vế \(\Rightarrow dpcm\)