\(\frac{16}{\sqrt{x-6}}+\frac{4}{\sqrt{y-1}}+\frac{256}{\sqrt{z-1725}}+\sqrt{x-6+\sqrt{y-1}}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

Đề bài của bạn không ổn nhé, mình xin sửa lại :

Cho \(\frac{16}{\sqrt{x-6}}+\frac{4}{\sqrt{y-1}}+\frac{256}{\sqrt{z-1725}}=\sqrt{x-6}+\sqrt{y-1}+\sqrt{z-1725}\) .Tìm ba số x,y,z thỏa mãn điều kiện trên.

\(\frac{16}{\sqrt{x-6}}+\frac{4}{\sqrt{y-1}}+\frac{256}{\sqrt{z-1725}}=\sqrt{x-6}+\sqrt{y-1}+\sqrt{z-1725}\)

\(\Leftrightarrow\frac{\left(4-\sqrt{x-6}\right)^2}{\sqrt{x-6}}+\frac{\left(2-\sqrt{y-1}\right)^2}{\sqrt{y-1}}+\frac{\left(16-\sqrt{z-1725}\right)^2}{\sqrt{z-1725}}=0\)

\(\Leftrightarrow\hept{\begin{cases}4-\sqrt{x-6}=0\\2-\sqrt{y-1}=0\\16-\sqrt{z-1725}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=22\\y=5\\z=1981\end{cases}}\)

16 tháng 7 2016

\(\frac{16}{\sqrt{x-6}}+\frac{4}{\sqrt{y-2}}+\frac{256}{\sqrt{z-1750}}+\sqrt{x-6}+\sqrt{y-2}+\sqrt{z-1750}=44\) (Điều kiện xác định : \(x>6;y>2;z>1750\))

\(\Leftrightarrow\left(\sqrt{x-6}+\frac{16}{\sqrt{x-6}}-8\right)+\left(\sqrt{y-2}+\frac{4}{\sqrt{y-2}}-4\right)+\left(\sqrt{z-1750}+\frac{256}{\sqrt{z-1750}}-32\right)=0\)

\(\Leftrightarrow\frac{\left(x-6\right)-8\sqrt{x-6}+16}{\sqrt{x-6}}+\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}+\frac{\left(z-1750\right)-32\sqrt{z-1750}+256}{\sqrt{z-1750}}=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x-6}-4\right)^2}{\sqrt{x-6}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{z-1750}-16\right)^2}{\sqrt{z-1750}}=0\)

Vì \(\frac{\left(\sqrt{x-6}-4\right)^2}{\sqrt{x-6}}\ge0\) , \(\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}\ge0\) , \(\frac{\left(\sqrt{z-1750}-16\right)^2}{\sqrt{z-1750}}\ge0\) với mọi x>6 , y>2 , z>1750 nên phương trình trên tương đương với : 

\(\begin{cases}\frac{\left(\sqrt{x-6}-4\right)^2}{\sqrt{x-6}}=0\\\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}=0\\\frac{\left(\sqrt{z-1750}-16\right)^2}{\sqrt{z-1750}}=0\end{cases}\) \(\Leftrightarrow\begin{cases}\left(\sqrt{x-6}-4\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{z-1750}-16\right)^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=22\\y=6\\z=2006\end{cases}\) (TMĐK)

Vậy (x;y;z) = (22;6;2006)

 

16 tháng 7 2016

uầy !kinh

13 tháng 7 2016

Đặt \(a=\sqrt{2x-3}\) ; \(b=\sqrt{y-2}\) ; \(c=\sqrt{3z-1}\) (\(a,b,c>0\))

Ta có : \(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c=14\)

\(\Leftrightarrow\left(\sqrt{2x-3}+\frac{1}{\sqrt{2x-3}}-2\right)+\left(\sqrt{y-2}+\frac{4}{\sqrt{y-2}}-4\right)+\left(\sqrt{3z-1}+\frac{16}{\sqrt{3z-1}}-8\right)=0\)

\(\Leftrightarrow\left[\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}\right]+\left[\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}\right]+\left[\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}\right]=0\)

\(\Leftrightarrow\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}}\)(TMĐK)

Vậy : \(\left(x;y;z\right)=\left(2;6;\frac{17}{3}\right)\)

13 tháng 7 2016

Phần đặt ẩn a,b,c bạn bỏ đi nhé ^^

14 tháng 7 2015

+\(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\Leftrightarrow\left(\sqrt{x-y+z}+\sqrt{y}\right)^2=\left(\sqrt{x}+\sqrt{z}\right)^2\)

\(\Leftrightarrow x-y+z+y+2\sqrt{xy-y^2+zx}=x+z+2\sqrt{zx}\)

\(\Leftrightarrow2\sqrt{xy-y^2+zx}=2\sqrt{zx}\Leftrightarrow xy-y^2+zx=zx\)

\(\Leftrightarrow y\left(x-y\right)=0\Leftrightarrow x=y\text{ (do }y\ne0\text{)}\)

+\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow\frac{xy+yz+zx}{xyz}=1\Leftrightarrow xy+yz+zx=xyz\)

\(\Leftrightarrow xy+yz+zx-xyz=0\)\(\Leftrightarrow x^2+zx+zx-x^2z=0\Leftrightarrow x\left(x+2z-xz\right)=0\)

\(\Leftrightarrow x+2z-xz=0\text{ (do }x\ne0\text{)}\)\(\Leftrightarrow\left(x-2\right)\left(z-1\right)=2=-1.\left(-2\right)=1.2\)

Do x, z nguyên nên có các trường hợp sau:

+\(x-2=-1\Leftrightarrow x=1\text{ và }z-1=-2\Leftrightarrow z=-1\text{ (loại do }z>0\text{)}\)

+\(x-2=1\Leftrightarrow x=3\text{ và }z-1=2\Leftrightarrow z=3\Rightarrow\left(x;y;z\right)=\left(3;3;3\right)\)

+\(x-2=-2\Leftrightarrow x=0\text{ và }z-1=-1\Leftrightarrow z=0\text{ (loại do }x,z\ne0\text{)}\)

+\(x-2=2\Leftrightarrow x=4\text{ và }z-1=1\Leftrightarrow z=2\Rightarrow\left(x;y;z\right)=\left(4;4;2\right)\)

Kết luận: \(\left(x;y;z\right)=\left(3;3;3\right);\left(4;4;2\right)\)

 

 

14 tháng 7 2015

tớ chưa lên lớp 8 nên ko bít làm

28 tháng 12 2015

Áp dụng Cosi

\(\frac{1}{\sqrt{2x-3}}+\sqrt{2x-3}\ge2\)

\(\frac{4}{\sqrt{y-2}}+\sqrt{y-2}\ge4\)

\(\frac{16}{\sqrt{3z-1}}+\sqrt{3z-1}\ge8\)

=> VT >/ VP

Dấu ' = ' xảy ra khi 2x -3 =1=>x =2

                             y -2 = 4 => y =6

                              3z -1 =16 => z =17/3

28 tháng 4 2019

uy bạn giỏi thế lớp 7 học toán 8 rồi af gh3 z