Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(-1)=1-a+b; f(0)=b; f(1)=1+a+b
theo giả thiết có: \(\hept{\begin{cases}\frac{-1}{2}\le b\le\frac{1}{2}\left(1\right)\\\frac{-1}{2}\le1-a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le-a+b\le\frac{-1}{2}\left(2\right)\\\frac{-1}{2}\le1+a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le a+b\le\frac{-1}{2}\left(3\right)\end{cases}}\)
cộng theo từng vế của (2) và (3) có: \(\frac{-3}{2}\le b\le\frac{-1}{2}\left(4\right)\)
từ (1) và (4) ta có: \(b=\frac{-1}{2}\), thay vào (2) và (3) ta được a=0
vậy đa thức cần tìm là \(f\left(x\right)=x^2-\frac{1}{2}\)
+)\(\left|f\left(x\right)\right|\le\frac{1}{2}\Leftrightarrow-\frac{1}{2}\le f\left(x\right)\le\frac{1}{2}\)
+)\(x^2+ax+b=x^2+2\cdot\frac{a}{2}\cdot x+b+\frac{a^2}{4}-\frac{a^2}{4}+b=\left(x+\frac{a}{2}\right)^2+b-\frac{a^2}{4}\)
\(\ge b-\frac{a^2}{4}=-\frac{1}{2}\)
+)\(f\left(x\right)\)có đồ thị quay lên nên đạt giá trị lớn nhất khi x=1 hoặc x=-1
+) Khi x=1 thì \(a+b+1=\frac{1}{2}\Leftrightarrow a+b=-\frac{1}{2}\)
+) Khi x=-1 thì \(b-a+1=\frac{1}{2}\Leftrightarrow b-a=-\frac{1}{2}\)
+) TH1: \(\hept{\begin{cases}a+b=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)
+) TH2: \(\hept{\begin{cases}b-a=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)
Vậy a=0, b=1/2
P/s: Bài này mình không chắc chắn lắm nhé!
Ta có: \(\left|f\left(0\right)\right|=\left|c\right|\le k.\)
\(\left|f\left(1\right)\right|=\left|a+b+c\right|\le k\Leftrightarrow-k\le a+b+c\le k.\)(1)
\(\left|f\left(-1\right)\right|=\left|a-b+c\right|=\left|-a+b-c\right|\le k\Leftrightarrow-k\le-a+b-c\le k\).(2)
Cộng lần lượt các vế của (1) và (2) ta có: \(-2k\le2b\le2k\Leftrightarrow-k\le b\le k\Leftrightarrow\left|b\right|\le k.\)
Mặt khác ta có: \(\hept{\begin{cases}-k\le a+b+c\le k\\-k\le a-b+c\le k\end{cases}\Rightarrow-2k\le2a+2c\le2k\Leftrightarrow-k\le a+c\le k.}\)
Chọn c = k thì \(-k\le a+k\Leftrightarrow-2k\le a.\)
Chọn c = k thì \(a-k\le k\Leftrightarrow a\le2k.\) Vậy \(\left|a\right|\le2k\).
Ta có: \(\left|a\right|+\left|b\right|+\left|c\right|\le2k+k+k=4k\left(đpcm\right).\)
Nguyễn Thanh Hằng,nguyen van tuan,Nguyễn Huy Tú,Ace Legona,... giúp mk vs
Đầu tiên ta chứng minh: \(\left|a\right|\le1,\left|b\right|\le1,\left|c\right|\le1\)Lời giải em tham khảo tại đây http://olm.vn/hoi-dap/question/709608.html.
Phần chứng minh |a|< 1 phải chọn c khéo chút xíu.
Do \(\left|f\left(x\right)\right|\ge7\) nên \(\left|4a+2b+c\right|\ge7\).
Mà \(\left|4a+2b+c\right|\le\left|4a\right|+\left|2b\right|+\left|c\right|\le7.\)
Dấu bằng xảy ra khi a = b = c = 1.
Câu 2: Ta có: a , b ,c là các số thực dương ( bài cho )
=> Tồn tại 3 số thực dương x , y, z thỏa mãn : \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{x}{z}\)
=> \(\frac{a-1}{c}+\frac{c-1}{b}+\frac{b-1}{a}=\frac{x^3}{xyz}+\frac{y^3}{xyz}+\frac{z^3}{xyz}=\frac{x^3+y^3+z^3}{xyz}\)
<=>\(\frac{x^3+y^3+z^3}{xyz}\ge0=\frac{x^2y+y^2z+z^2x}{xyz}\)( Bước này tách 0 ra cho cùng mẫu )
<=> \(x^3+y^3+z^3\ge x^2y+y^2z+z^2x\)
Áp dụng BĐT TB cộng và TB nhân => \(x^3+y^3+z^3\ge3x^2y\)
Làm 2 BĐT tương tự rồi cộng vào => Đpcm
thiếu đề nx kìa :v