Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay x=2014 vào ta có:
f(2014)=20142014-2015.20142013+2015.20142012-2015.20142011+...-2015.2014+2015
=20142014-(2014+1)20142013+(2014+1).20142012-(2014+1).20142011+...-(2014+1).2014+2014+1
=20142014-20142014-20142013+20142013+20142012-20142012-20142011+...-20142-2014+2014+1
=1
x=2012
nên x+1=2013
\(f\left(x\right)=x^{2013}-x^{2012}\left(x+1\right)+x^{2011}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}-...-x^3-x^2+x^2+x-1\)
=x-1
=2012-1=2011
x = 2014 => x + 1 = 2015
=> f(2014) = x2014 - (x + 1).x2013 + (x + 1).x2012 - ... - (x + 1).x + x + 1
= x2014 - x2014 - x2013 + x2013 + x2012 - ... - x2 - x + x + 1
= 1
a) Ta có:
\(\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}=\frac{x+11}{15}+\frac{x+11}{16}\)
\(\Rightarrow\left(x+11\right)\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)=\left(x+11\right)\left(\frac{1}{15}+\frac{1}{16}\right)\)
Mà ta có:
\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\ne\frac{1}{15}+\frac{1}{16}\)
\(\Rightarrow x+11=0\Rightarrow x=-11\)
Ta có:
\(A=1+x+x^2+x^3+...+x^{100}\)
Đặt \(B=x+x^2+x^3+...+x^{100}\)
\(\Rightarrow B=\left(-11\right)+\left(-11\right)^2+\left(-11\right)^3+...+\left(-11\right)^{100}\)
\(\Rightarrow-11B=\left(-11\right)^2+\left(-11\right)^3+\left(-11\right)^4+...+\left(-11\right)^{101}\)
\(\Rightarrow-11B-B=\left(-11\right)^{101}-\left(-11\right)\)
\(\Rightarrow-12B=\left(-11\right)^{101}+11\Rightarrow B=\frac{\left(-11\right)^{101}+11}{-12}\)
\(\Rightarrow A=1+B=\frac{\left(-11\right)^{101}+11}{-12}+1\)
x=100
nên x+1=101
\(f\left(x\right)=x^{2014}-\left(x+1\right)\left(x^{2013}-x^{2012}+...-x^2+x\right)+25\)
\(=x+25\)
=x+25=100+25=125