Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Từ phương trình thứ hai ta có: x= 2 - 2y thế vào phương trình thứ nhất được:
(m-1)(2-2y) + y =2
<=> ( 2m - 3)y= 2m-4 (3)
Hệ có nghiệm x,y là các số nguyên <=> (3) có nghiệm y nguyên.
Với m thuộc Φ => 2m-3 khác 0 => (3) có nghiệm y=\(\dfrac{2m-4}{2m-3}\)
y thuộc Φ <=> \(\left[{}\begin{matrix}2m-3=1\\2m-3=-1\end{matrix}\right.< =>\left[{}\begin{matrix}m=2\\m=1\end{matrix}\right.\)
Vậy có hai giá trị m thỏa mãn:1,2.
Δ=(2m-1)^2-4(2m-2)
=4m^2-4m+1-8m+8=(2m-3)^2
Để pt có 2 nghiệm pb thì 2m-3<>0
=>m<>3/2
x1^4+x2^4=17
=>(x1^2+x2^2)^2-2(x1x2)^2=17
=>[(2m-1)^2-2(2m-2)]^2-2(2m-2)^2=17
=>[4m^2-4m+1-4m+4]^2-2(4m^2-8m+4)=17
=>(4m^2-8m+5)^2-2(4m^2-8m+4)=17
Đặt 4m^2-8m+4=a
Ta sẽ có (a+1)^2-2a-17=0
=>a^2-16=0
=>a=4 hoặc a=-4(loại)
=>4m^2-8m=0
=>m=0 hoặc m=2
\(x^2-2\left(m-1\right)x-2m=0\)
\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)
\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
\(\Delta=\left(m-2\right)^2+8>0\) với mọi m . Vậy pt có 2 nghiệm phân biệt với mọi m
Do : \(x_1x_2=-8\) nên \(x_2=\dfrac{-8}{x1}\)
\(Q=\left(x_1^2-1\right)\left(x_2^2-4\right)=\left(x_1^2-1\right)\left(\dfrac{64}{x_1^2}-4\right)=68-4\left(x_1^2+\dfrac{16}{x_1^2}\right)\le68-4.8=36\)
\(\left(x_1^2+\dfrac{16}{x_1^2}\ge8\right)\)\(;Q=36\) khi và chỉ khi x1 = ( 2 ; -2 )
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
Để \(f\left(x\right)=\left(ax+b\right)^2\)
\(\Leftrightarrow x^2-\left(2m+1\right)x+m^2+1=\left(ax+b\right)^2\)
\(\Leftrightarrow x^2-\left(2m+1\right)x+\left(m^2+1\right)=a^2x^2+2abx+b^2\)
Đồng nhất hệ số ta được :
\(\left\{{}\begin{matrix}a^2=1\\2ab=-\left(2m+1\right)\\b^2=m^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\pm1\\2ab=-2m-1\\b^2=m^2+1\end{matrix}\right.\)
Với \(a=1\Rightarrow\left\{{}\begin{matrix}2b=-2m-1\\b^2=m^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{4}\\b=-\dfrac{5}{4}\end{matrix}\right.\)
Với \(a=-1\Rightarrow\left\{{}\begin{matrix}-2b=-2m-1\\b^2=m^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{4}\\b=\dfrac{5}{4}\end{matrix}\right.\)
Vậy \(m=\dfrac{3}{4}\)