Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=1>0\) ; \(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)
a/ Để \(f\left(x\right)\le0\) \(\forall x\in\left(0;1\right)\)
\(\Leftrightarrow x_1\le0< 1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\1-\left(m-2\right)\le0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Do đó các câu c, f cũng không tồn tại m thỏa mãn
b/ TH1: \(\Delta< 0\Rightarrow2< m< 3\)
TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\notin\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\)
\(\Delta>0\Rightarrow\left[{}\begin{matrix}m>3\\m< 2\end{matrix}\right.\)
\(0\le x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\ge0\\\frac{x_1+x_2}{2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ge0\\m-2>0\end{matrix}\right.\) \(\Rightarrow m>2\) \(\Rightarrow m>3\)
\(x_1< x_2\le1\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3-m\ge0\\m-2< 1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m
Kết hợp 3 TH \(\Rightarrow m\ge2\)
d/ Tương tự như câu b, nhưng
TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\in\left[0;1\right]\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0< x_1< x_2\\x_1< x_2< 1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow m>3\)
Kết hợp 3 TH \(\Rightarrow\left[{}\begin{matrix}2< m< 3\\m>3\end{matrix}\right.\)
e/
TH1: \(\Delta\le0\Rightarrow2\le m\le3\)
TH2: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>3\)
\(\Rightarrow m\ge2\)
Ta có : \(\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m-1\right)^2-\left(m-2\right)=m^2-3m+3>0\end{matrix}\right.\)
Để \(f\left(x\right)\le0\forall x\in\left[0;1\right]\)
\(\Leftrightarrow x_1\le0< 1\le x_2\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\-m+1\le0\end{matrix}\right.\Rightarrow1\le m\le2\)
Vậy ...
Lời giải:
\(f(x)=(-x+1)(x-2)>0\Leftrightarrow \left\{\begin{matrix} -x+1< 0\\ x-2< 0\end{matrix}\right.\) hay $1< x< 2$
hay $x\in (1;2)$
Đáp án D
\(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)
m thuôc (2;3) luôn sai
m thuộc (-vc;2]U[3;vc)
\(x_1=m-2-\sqrt{m^2-5m+6};x_2=m-2+\sqrt{m^2-5m+6}\)
\(\dfrac{-b}{2a}=\left(m-2\right)\)
m-2 <= 0 <=> m<=2 cần f(1) <=0<=> 1-2(m-2) +(m-2) <=0
<=>(m-2) >=1 => loại
m-2>=1 <=> m>=3
cần f(0) <=0<=> (m-2) <=0 => loại
kết luận vô nghiệm m
a/ \(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta=\left(3+m\right)^2-8\left(m+1\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m^2-2m+1\le0\end{matrix}\right.\) \(\Rightarrow m=1\)
b/ - Với \(m=-1\Rightarrow-2x+2< 0\Rightarrow x>1\) (ko thỏa mãn)
Với \(m\ne-1\Rightarrow\Delta=\left(m-1\right)^2\ge0\) \(\forall m\)
Để \(f\left(x\right)< 0\) với mọi \(x< -1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1< 0\\-1< x_1< x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\\left(x_1+1\right)\left(x_2+1\right)>0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\\frac{2}{m+1}+\frac{m+3}{m+1}+1>0\\\frac{m+3}{m+1}>-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\2m+6< 0\\3m+5< 0\end{matrix}\right.\) \(\Rightarrow m< -3\)
\(f\left(x\right)=\left(5+x\right)\left(x-6\right)\)
\(f\left(x\right)=30+x-x^2\)
\(f\left(x\right)=\frac{121}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{121}{4}\left[\left(x-\frac{1}{2}\right)^2\ge0\right]\)
\(GTNN:f\left(x\right)=\frac{121}{4}\)
Để \(f\left(x\right)\le0\)
Xét m=0 \(\Rightarrow f\left(x\right)=4x-3\) loại
với m khác 0, f(x) là hàm bậc 2 do đó, \(f\left(x\right)\le0\Leftrightarrow\hept{\begin{cases}m< 0\\\Delta'=\left(m-2\right)^2-m\left(m-3\right)\le0\end{cases}\Leftrightarrow\hept{\begin{cases}m< 0\\-m+4\le0\end{cases}\Leftrightarrow}m\in\varnothing}\)