Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(1\right)=\left(1^2+1-1\right)^{2014}+\left(1^2-1-1\right)^{2014}-2=1+1-2=0\)
Nên \(f\left(x\right)⋮\left(x-1\right)\)
\(f\left(-1\right)=\left[\left(-1\right)^2+\left(-1\right)-1\right]^{2014}.\left[\left(-1\right)^2-\left(-1\right)-1\right]^{2014}-2=1+1-2=0\)
Nên \(f\left(x\right)⋮\left(x+1\right)\)
Vậy \(f\left(x\right)⋮\left[\left(x-1\right)\left(x+1\right)\right]\Rightarrow f\left(x\right)⋮\left(x^2-1\right)\)
Ta có: \(g\left(x\right)=x^2-x\)có nghiệm x=0 và x=1 (vì \(x^2-x=x\left(x-1\right)\))
Để chứng minh \(f\left(x\right)⋮g\left(x\right)\), ta sẽ chứng minh \(f\left(x\right)\)cũng có nghiệm x=0 và x=1.
Thay x=0 vào \(f\left(x\right)\):\(f\left(0\right)\)\(=\left(-1\right)^{2018}+1^{2018}-2=0\)
Thay x=1 vào \(f\left(x\right)\): \(f\left(1\right)=1^{2018}+1^{2018}-2=0\)
\(\Rightarrow\)x=0 và x=1 là hai nghiệm của \(f\left(x\right)\)
\(\Rightarrowđpcm\)
\(g\left(x\right)=x^2-x\)
g(x) có nghiệm\(\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
Để chứng minh \(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)chia hết cho \(g\left(x\right)=x^2-x\)thì ta chứng minh tất cả nghiệm của đa thức g(x) cũng là nghiệm của f(x) hay 1 và 0 là nghiệm của f(x) (1)
Thật vậy:\(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)
+) Thay x = 0 vào f(x), ta được: \(f\left(0\right)=\left(0^2+0-1\right)^{2018}+\left(0^2-0+1\right)^{2018}-2=1+1-2=0\)
+) Thay x = 1 vào f(x), ta được: \(f\left(1\right)=\left(1^2+1-1\right)^{2018}+\left(1^2-1+1\right)^{2018}-2=1+1-2=0\)
Qua hai kết quả trên ta suy ra f(x) có 2 nghiệm là 0 và 1 (2)
Từ (1) và (2) suy ra \(f\left(x\right)⋮g\left(x\right)\)(đpcm)
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
n - 2 | 1 | - 1 | 3 | - 3 |
n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }
\(f\left(x\right)\) chia \(x+1\) dư 4 \(\Rightarrow f\left(x\right)=\left(x+1\right).P\left(x\right)+4\)
\(f\left(-1\right)=\left(-1+1\right)P\left(x\right)+4=4\)
Do \(\left(x+1\right)\left(x^2+1\right)\) là đa thức bậc 3 \(\Rightarrow\) phần dư của phép chia \(f\left(x\right)\) cho \(\left(x+1\right)\left(x^2+1\right)\) là bậc 2 có dạng \(ax^2+bx+c\)
\(\Rightarrow f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+ax^2+bx+c\)(1)
\(f\left(-1\right)=a-b+c=4\) (2)
Biến đổi biểu thức (1):
\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(f\left(x\right)=\left(x^2+1\right)\left[\left(x+1\right).Q\left(x\right)+a\right]+bx+c-a\)
\(\Rightarrow f\left(x\right)\) chia \(x^2+1\) dư \(bx+c-a\)
\(\Rightarrow bx+c-a=2x+3\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)
Kết hợp (2) ta được: \(\left\{{}\begin{matrix}b=2\\c-a=3\\a-b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=2\\c=\dfrac{9}{2}\end{matrix}\right.\)
Vậy phần dư cần tìm là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)
Theo Bơdu, ta có:
\(f\left(x\right):\left(x+1\right)\) dư 4
\(\Rightarrow f\left(-1\right)=4\)
Vì đa thức chia \(\left(x+1\right)\left(x^2+1\right)\) có bậc 3 nên đa thức dư có bậc \(\le2\). Đặt đa thức dư có dạng \(ax^2+bx+c\)
Gọi \(P\left(x\right)\) là đa thức thương. Ta có:
\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+bx+c\)
\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+a-a+bx+c\)
\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(=\left(x^2+1\right)\left[P\left(x\right).\left(x+1\right)+a\right]+bx-a+c\)
Vì \(f\left(x\right):\left(x^2+1\right)\)dư \(2x+3\)
\(\Rightarrow bx+c-a=2x+3\)
\(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)
Lại có: \(f\left(-1\right)=ax^2+bx+c=4\)
\(\Leftrightarrow a-b+c=4\Leftrightarrow a+c-2=4\)
\(\Leftrightarrow a+c=6\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=\dfrac{9}{2}\end{matrix}\right.\)
Vậy đa thức dư là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)
cái trên thì bn dùng BĐT Bunhiakovshi nha
cái dưới hơi rườm tí mik ko bt lm đúng ko
\(f\left(x\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)\)
\(f\left(x-1\right)=\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)
\(\Rightarrow f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)-\)
\(\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)
\(=x\left(x+1\right)\left[\left(x+2\right)\left(ax+b\right)-\left(x-1\right)\left(ax-a+b\right)\right]\)
\(=x\left(x+1\right)[x\left(ax+b\right)+2\left(ax+b\right)-x\left(ax-a+b\right)\)
\(+\left(ax-a+b\right)]\)
\(=x\left(x+1\right)(ax^2+bx+2ax+2b-ax^2+ax\)
\(-bx+ax-a+b)\)
\(=x\left(x+1\right)\left(4ax-a+3b\right)\)
Mà theo đề \(f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)
Đồng nhất hệ số là ra