\(f\left(x\right)=ax^2+bx+c>0\)    với mọi x và a,b,c nguyên dương (b khác 1)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2019

Từ giải thiết :\(f\left(x\right)=ax^2+bx+c>0\Rightarrow\Delta< 0\Leftrightarrow4ac>b^2.\left(1\right)\)(bạn đọc ở chuyên đề Dấu tam thức bậc hai có cái này)

Với a,b,c nguyên dương (b khác 1)

Áp dụng bất đẳng thức AM-GM cho 2 số không âm ta có:

\(3350a+1340c\ge2\sqrt{3350a.1340c}=2\sqrt{335^2.10.4ac}\)

Kết hợp  với (1) suy ra:

\(3350a+1340a\ge2.335.\sqrt{b^2.10}>2.335.3.b=2010b.\)

\(\Rightarrow3350a+1340c+2b+1>2012b+1\)

\(\Rightarrow3350a+1340c+4ac+2b+1>b^2+2012b+1\)

\(\Rightarrow\frac{3350a+1340b+4ac+2b+1}{b}>b+2012+\frac{1}{b}\)

Mà \(b+\frac{1}{b}\ge2\sqrt{b.\frac{1}{b}}=2\Rightarrow b+2012+\frac{1}{b}\ge2014.\)

Suy ra \(\frac{3350a+1340c+4ac+2b+1}{b}>2014.\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

Điều cần chứng minh tương đương với:

\(3350a+1340c+4ac+2b+1>2014b\)

\(\Leftrightarrow 670(5a-3b+2c)+(4ac-2b+1)>0(*)\)

Vì $f(x)>0$ với mọi $x$ nên $f(x)=0$ không có nghiệm $\Rightarrow \Delta'=b^2-4ac< 0$

$\Rightarrow b^2< 4ac\Rightarrow 4ac-2b+1> b^2-2b+1=(b-1)^2>0(1)$ với mọi $b\neq 1$

Lại có:

$f(-1)>0; f(-2)>0$

$\Rightarrow f(-1)+f(-2)>0$

$\Leftrightarrow a-b+c+4a-2b+c>0\Leftrightarrow 5a-3b+2c>0(2)$

Từ $(1);(2)\Rightarrow (*)$ đúng. Ta có đpcm.

31 tháng 5 2017

2, 5a+b+3c/a-b+c>1 <=> a-b+c+4a+2b+2c/a-b+c>1 

<=>4a+2b+2c/a-b+c > 0 (1) 

xét P(2)=4a+2b+c>0,P(-1)=a-b+c>0 (do P(x)>0 với mọi x)

=>P(2)/P(-1)>0 => (1) đúng =>đpcm

3, hóng cao nhân 

-đề chuyên LQĐ

31 tháng 5 2017

1,Bổ đề : (a^2+b^2+c^2)(a+b+c) >= 3(a^2b+b^2c+c^2a) (nhân bung rồi Cauchy từng cặp 2 số) 

từ đó  P <= (a+b+c)/3-(a+b+c)^2/9=x/3-x^2/9 (với x=a+b+c>0)=x/3-(x/3)^2=t-t^2(với t=a+b+c>0)=t(1-t)<=(t+1-t)^2/4=1/4

maxP=1/4,đạt tại a=b=c=1/2 

29 tháng 5 2017

b/ Sửa đề chứng minh: \(\frac{5a-3b+2c}{a-b+c}>1\)

Theo đề bài ta có:

\(\hept{\begin{cases}f\left(-1\right)=a-b+c>0\left(1\right)\\f\left(-2\right)=4a-2b+c>0\left(2\right)\end{cases}}\)

Ta có: \(\frac{5a-3b+2c}{a-b+c}>1\)

\(\Leftrightarrow\frac{4a-2b+c}{a-b+c}>0\)

Mà theo (1) và (2) thì ta thấy cả tử và mẫu của biểu thức đều > 0 nên ta có ĐPCM

30 tháng 1 2019

2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)

\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)

\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)

30 tháng 1 2019

3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)

Dễ thấy

 \(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)

Từ phương trình đầu ta có:

\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)

\(\Leftrightarrow y\le1\)

Vậy \(x=y=1\)

3 tháng 9 2017

1.

Nhân 2 vế của BĐT với \(\left(a+b+c\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(3(a^2+b^2+c^2)(a+b)(b+c)(c+a)\ge(a+b+c)\left(Σ_{cyc}(a^2+b^2)(c+a)(c+b)\right)\)

\(\LeftrightarrowΣ_{perms}a^2b\left(a-b\right)^2\ge0\) *đúng*

NV
3 tháng 11 2019

\(x^2-1=\frac{1}{4}\left(a^2+\frac{1}{a^2}+2\right)-1=\frac{1}{4}\left(a-\frac{1}{a}\right)^2\)

\(\Rightarrow\sqrt{x^2-1}=\frac{1}{2}\left(a-\frac{1}{a}\right)\)

Tương tự \(\sqrt{y^2-1}=\frac{1}{2}\left(b-\frac{1}{b}\right)\)

\(A=\frac{\frac{1}{4}\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)-\frac{1}{4}\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)}{\frac{1}{4}\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)+\frac{1}{4}\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)}=\frac{ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab}-ab-\frac{1}{ab}+\frac{a}{b}+\frac{b}{a}}{ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab}+ab+\frac{1}{ab}-\frac{a}{b}-\frac{b}{a}}\)

\(=\frac{\frac{a}{b}+\frac{b}{a}}{ab+\frac{1}{ab}}=\frac{a^2+b^2}{a^2b^2+1}\)

b/ \(B=\frac{\left(\sqrt{a+bx}+\sqrt{a-bx}\right)^2}{a+bx-\left(a-bx\right)}=\frac{a+\sqrt{a^2-b^2x^2}}{bx}\)

\(a^2-b^2x^2=a^2-\frac{4a^2m^2}{\left(1+m^2\right)^2}=\frac{a^2\left(m^4+2m^2+1\right)-4a^2m^2}{\left(1+m^2\right)^2}=\frac{a^2\left(1-m^2\right)^2}{\left(1+m^2\right)^2}\)

\(\Rightarrow B=\left(a+\frac{a\left(1-m^2\right)}{1+m^2}\right).\left(\frac{1+m^2}{2am}\right)=\frac{a+am^2+a-am^2}{2am}=\frac{1}{m}\)

3 tháng 10 2019

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

Hello

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.