K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

Chọn C.

Vì x = 2,7 > 0 nên ta có: 

do đó: f( 2,7) = 2,7.

8 tháng 7 2018

Đáp án: C.

Vì lnC mới là số thực tùy ý, D sai vì không cộng hằng số C vào biến.

29 tháng 1 2019

Đáp án: C.

Vì lnC mới là số thực tùy ý, D sai vì không cộng hằng số C vào biến.

26 tháng 10 2017

Chọn B

Ta có

NV
8 tháng 4 2019

Theo tính chất của tích phân:

\(\int\limits^4_1f'\left(x\right)dx=f\left(4\right)-f\left(1\right)\Rightarrow f\left(4\right)-f\left(1\right)=17\)

\(\Rightarrow f\left(4\right)=f\left(1\right)+17=-12+17=5\)

16 tháng 12 2017

Đáp án A.

28 tháng 7 2017

Đáp án B

NV
4 tháng 5 2019

\(y'=\frac{5\left(x^2+4\right)-2x.5x}{\left(x^2+4\right)}f'\left(\frac{5x}{x^2+4}\right)=\frac{5\left(4-x^2\right)}{x^2+4}f'\left(\frac{5x}{x^2+4}\right)\)

\(=\frac{5\left(2-x\right)\left(2+x\right)}{\left(x^2+4\right)}.\left(\frac{5x}{x^2+4}\right)^2.\left(\frac{5x}{x^2+4}-1\right)\left(\frac{65x}{x^2+4}-15\right)^3\)

\(=\frac{5\left(2-x\right)\left(2+x\right).25x^2\left(x-4\right)\left(1-x\right)\left(x-3\right)^3\left(4-3x\right)^3.5^3}{\left(x^2+4\right)^7}\)

Ta thấy \(y'=0\) có 7 nghiệm nhưng nghiệm \(x=0\) có mũ chẵn nên hàm số có 6 điểm cực trị

24 tháng 9 2018

Ta có f ( 0 )   =   0 f ( 1 )   =   0 f ' ( 0 )   =   0 f ' ( 1 )   =   0  

↔ a   =   2 b   =   - 3 c   =   0 d   =   1

suy ra hàm số đã cho là : y= 2x3-3x2+ 1.

Ta thấy: f(x) = 0  ↔ x = 0 hoặc x = -1/2

Bảng biến thiên của hàm số  y = |f(x)| như sau:

Dựa vào bảng biến thiên suy ra phương trình |f(x)| = m có bốn nghiệm phân biệt x1< x2< x3< ½< x4  khi và chỉ khi ½< m< 1.

Chọn A.