K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018

Đáp án A

Đặt .

Khi đó trở thành:

.

; ; ; ; ; .

Xét phương trình là pt hoành độ giao điểm

Ta có

Dựa vào bảng biến thiên, ta có

+ Với , ta có d cắt tại 3 điểm phân biệt, nên phương trình có 3 nghiệm.

+ Với , ta có d cắt tại 1 điểm, nên phương trình có 1 nghiệm.

 

Vậy phương trình đã cho có 4 nghiệm.

29 tháng 5 2017

NV
10 tháng 3 2023

\(f^2\left(\left|x\right|\right)-\left(m-6\right)f\left(\left|x\right|\right)-m+5=0\) có \(a-b+c=0\) nên có các nghiệm \(\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=m-5\end{matrix}\right.\)

- Với \(f\left(\left|x\right|\right)=-1\Rightarrow\left|x\right|^2-4\left|x\right|+3=-1\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\) có 2 nghiệm

- Xét \(f\left(\left|x\right|\right)=m-5\Leftrightarrow\left|x\right|^2-4\left|x\right|+8=m\) (1)

Từ BBT của \(y=\left|x\right|^2-4\left|x\right|+8\) dễ dàng suy ra (1) có 4 nghiệm pb khi \(4< m< 8\)

\(\Rightarrow m=\left\{5;6;7\right\}\) có 3 giá trị nguyên

1 tháng 10 2018

Đáp án A

Phương pháp:

+) Số nghiệm của phương trình f(x) = m là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.

+) Dựa vào BBT để xác định số giao điểm của các đồ thị hàm số.

Cách giải:

Ta có: 

Số nghiệm của phương trình (*) là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y =  - 3 2

Dựa vào BBT ta thấy đường thẳng y =  - 3 2  cắt đồ thị hàm số y = f(x) tại 4 điểm phân biệt

=>Phương trình có 4 nghiệm phân biệt

6 tháng 12 2018

NV
6 tháng 10 2021

\(f\left(1-x\right)+f\left(x\right)=\dfrac{9^{1-x}}{9^{1-x}+3}+\dfrac{9^x}{9^x+3}=\dfrac{9}{9+3.9^x}+\dfrac{9^x}{9^x+3}=\dfrac{3}{9^x+3}+\dfrac{9^x}{9^x+3}=1\)

\(\Rightarrow f\left(x\right)=1-f\left(1-x\right)\)

\(\Rightarrow f\left(cos^2x\right)=1-f\left(sin^2x\right)\)

Do đó:

\(f\left(3m+\dfrac{1}{4}sinx\right)+f\left(cos^2x\right)=1\)

\(\Leftrightarrow f\left(3m+\dfrac{1}{4}sinx\right)=f\left(sin^2x\right)\) (1)

Hàm \(f\left(x\right)=\dfrac{9^x}{9^x+3}\) có \(f'\left(x\right)=\dfrac{3.9^x.ln9}{\left(9^x+3\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến trên R

\(\Rightarrow\left(1\right)\Leftrightarrow3m+\dfrac{1}{4}sinx=sin^2x\)

Đến đây chắc dễ rồi, biện luận để pt \(sin^2x-\dfrac{1}{4}sinx=3m\) có 8 nghiệm trên khoảng đã cho

30 tháng 1 2017

Đáp án C

2 tháng 11 2017

Đáp án D

6 tháng 8 2019

Đáp án B

 

7 tháng 7 2018

Đáp án A

Vậy PT đã cho có bốn nghiệm phân biệt.