K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2019

Đặt h( x) = 2f( x) – ( x-1) 2

 Suy ra đạo hàm: h’( x) = 2f’(x) -2( x-1).

Ta vẽ thêm đường thẳng  y= x-1.

 

Ta có h’ (x) =0 khi f’(x) =x-1

Suy ra x=0; x=1; x=2; x=3

Theo đồ thị h’(x) > .0  khi f’(x) > x-1 

Ta có :

 

Đồ thị hàm số g( x)  có nhiều điểm cực trị nhất khi h( x)  có nhiều giao điểm với trục hoành nhất.

 Vậy đồ thị hàm số h( x)  cắt trục hoành tại nhiều nhất 4 điểm, suy ra đồ thị hàm số g(x)  có tối đa 7 điểm cực trị.

Chọn B.

27 tháng 2 2019

Chọn B 

+ Với x= - 1: ta có : f’ (-1) = 0

  Giá trị của hàm số y= f’(x)  đổi dấu từ âm sang dương khi qua x= -1

=> Hàm số y= f(x) đạt cực  tiểu tại điểm x= -1

+ Tại điểm x=0 hoặc x= 2

- Đạo hàm tại 2 điểm đó bằng 0.

-  Giá trị của hàm  số y= f’(x) không đổi dấu khi đi  qua điểm đó. Nên x= 0; x= 2 không là điểm cực trị của hàm số

5 tháng 1 2019

23 tháng 5 2019

Chọn A

 

Cách 1: Từ đồ thị hàm số của ta thấy có hai cực trị dương nên hàm số lấy đối xứng phần đồ thị hàm số bên phải trục tung qua trục tung ta được bốn cực trị, cộng thêm giao điểm của đồ thị hàm số với trục tung nữa ta được tổng cộng là cực trị.

5 tháng 3 2018

Đáp án C

Khi đó hàm số y=f(x) đạt cực tiểu tại  x = x 1 hay hàm số y=f(x) có 1 điểm cực trị.

9 tháng 4 2019

Chọn A




Ta có: có đồ thị là phép tịnh tiến đồ thị hàm số y= f’(x)  theo phương Oy lên trên 4 đơn vị.

Khi đó đồ thị hàm số y= f( x) + 4x  cắt trục hoành tại 1 điểm.

 ta chọn đáp án A.

7 tháng 12 2019

Chọn C

 Đồ thị hàm số  y= f’( x+ 2018) là phép tịnh tiến của đồ thị hàm số y= f’(x) song song với trục hoành về bên trái 2018 đơn vị.

 =>  đồ thị hàm số  y= f’( x+ 1018) vẫn cắt trục hoành tại 3 điểm.

5 tháng 10 2019

23 tháng 10 2017

Ta có: f' (x - 2) = f' (x).(x-2)' = f'(x) 

Do đó; đồ thị hàm số y= f’ (x) có hình dạng tương tự như trên.

Đồ thị hàm số y= f( x-2)  có 3 điểm cực trị khi và chỉ khi đồ thị hàm số y= f( x) cũng có 3 điểm cực trị.

Chọn D.