K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a=\dfrac{4}{\sqrt{3}+\dfrac{1}{\sqrt{3}}}\)

\(=4:\dfrac{4\sqrt{3}}{3}\)

\(=\sqrt{3}\)

\(f\left(x\right)=\dfrac{\sqrt{\sqrt{3}+1}+\sqrt{\sqrt{3}-1}}{\sqrt{\sqrt{3}+1}-\sqrt{\sqrt{3}-1}}\)

\(=\dfrac{\left(\sqrt{3}+1+\sqrt{3}-1+2\cdot\sqrt{2}\right)}{2}\)

\(=\sqrt{3}+\sqrt{2}\)

\(a=\sqrt{2}+\sqrt{7-2\sqrt{5}-1}+1\)

\(=\sqrt{2}+\sqrt{5}-1+1=\sqrt{2}+\sqrt{5}\)

f(x)=x^4(x+2)-14x^2(x+2)+9(x+2)+1

=(x+2)(x^4-14x^2+9)+1

\(=\left(\sqrt{2}+\sqrt{5}+2\right)\left[\left(7+2\sqrt{10}\right)^2-14\left(7+2\sqrt{10}\right)+1\right]\)+1

\(=\left(\sqrt{2}+\sqrt{5}+2\right)\left(89+28\sqrt{10}-84-28\sqrt{10}+1\right)\)+1

=6(căn 2+căn 5+1)+1

15 tháng 7 2016

Ta có: \(f\left(x\right)=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}\)\(\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right)\left(\sqrt{x+1}+\sqrt{x-1}\right)}{\left(\sqrt{x+1}-\sqrt{x-1}\right)\left(\sqrt{x+1}+\sqrt{x-1}\right)}\)=\(\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{x+1-\left(x-1\right)}\)

                     = \(\frac{x+1+x-1+2\sqrt{\left(x-1\right)\left(x+1\right)}}{2}\)\(\frac{2x+2\sqrt{x^2-1}}{2}\)=\(x+\sqrt{x^2-1}\)

Với a= \(\sqrt{3}\)=> \(f\left(\sqrt{3}\right)=\sqrt{3}+\sqrt{\left(\sqrt{3}\right)^2-1}\)=\(\sqrt{3}+\sqrt{2}\)