\(f_1\left(x\right)=\dfrac{\cos x}{x};f_2\left(x\right)=x\sin x\)

Tính 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TL
1 tháng 12 2019

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

Từ đó suy ra f'(x)=0

a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0

d,f(x)=\(\frac{3}{2}\)=>f'(x)=0

4 tháng 4 2017

a) f'(x) = - 3sinx + 4cosx + 5. Do đó

f'(x) = 0 <=> - 3sinx + 4cosx + 5 = 0 <=> 3sinx - 4cosx = 5

<=> sinx - cosx = 1. (1)

Đặt cos φ = , (φ ∈) => sin φ = , ta có:

(1) <=> sinx.cos φ - cosx.sin φ = 1 <=> sin(x - φ) = 1

<=> x - φ = + k2π <=> x = φ + + k2π, k ∈ Z.

b) f'(x) = - cos(π + x) - sin = cosx + sin.

f'(x) = 0 <=> cosx + sin = 0 <=> sin = - cosx <=> sin = sin

<=> = + k2π hoặc = π - x + + k2π

<=> x = π - k4π hoặc x = π + k, (k ∈ Z).


9 tháng 4 2017

Ta có f'(x) = 2x, suy ra f'(1) = 2

và φ'(x) = 4 + . cos = 4 + . cos, suy ra φ'(1) = 4.

Vậy = = .

a: \(-1< =cosx< =1\)

\(\Leftrightarrow-2< =2cosx< =2\)

\(\Leftrightarrow-5< =2cosx-3< =-1\)

\(f\left(x\right)_{min}=-5\) khi cos x=-1

hay \(x=\Pi+k2\Pi\)

\(f\left(x\right)_{max}=-1\) khi cos x=1

hay \(x=k2\Pi\)

b: \(-1< =sinx< =1\)

\(\Leftrightarrow-2< =2sinx< =2\)

\(\Leftrightarrow5< =2sinx+7< =9\)

\(\Leftrightarrow\sqrt{5}< =\sqrt{2sinx+7}< =3\)

\(\Leftrightarrow3\sqrt{5}< =3\sqrt{2sinx+7}< =9\)

\(f\left(x\right)_{min}=3\sqrt{5}\) khi sin x=-1

hay \(x=-\dfrac{\Pi}{2}+k2\Pi\)

\(f\left(x\right)_{max}=9\) khi sin x=1

hay \(x=\dfrac{\Pi}{2}+k2\Pi\)