">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

1/cos^2x = 1 + tan^2x điều kiện cos^2x khác 0

14 tháng 10 2017

Kết quả ra tanx = 2 hoặc tanx = -√3

31 tháng 10 2016

giúp mình với !!!!

 

1 tháng 2 2018

a)lấy (x^2-9) ra khử còn cái đó thay vô =-18/1=-18

NV
10 tháng 10 2019

ĐKXĐ: \(-2\le x\le3\)

Đặt \(\sqrt{x+2}+2\sqrt{3-x}=a\Rightarrow4\sqrt{6+x-x^2}-3x=a^2-14\)

Mặt khác \(a^2=\left(\sqrt{x+2}+2\sqrt{3-x}\right)^2\le5\left(x+2+3-x\right)=25\)

\(\Rightarrow a\le5\)

\(\sqrt{x+2}+\sqrt{3-x}+\sqrt{3-x}\ge\sqrt{5}+\sqrt{3-x}\ge\sqrt{5}\) \(\Rightarrow a\ge\sqrt{5}\)

\(\Rightarrow\sqrt{5}\le a\le5\)

Phương trình trở thành:

\(a^2-14=ma\Leftrightarrow\frac{a^2-14}{a}=m\) với \(a\in\left[\sqrt{5};5\right]\)

\(f\left(a\right)=\frac{a^2-14}{a}\Rightarrow f'\left(a\right)=\frac{2a^2-a^2+14}{a^2}=\frac{a^2+14}{a^2}>0\)

\(\Rightarrow f\left(a\right)\) đồng biến \(\Rightarrow f\left(\sqrt{5}\right)\le f\left(a\right)\le5\)

\(\Rightarrow-\frac{9\sqrt{5}}{5}\le f\left(a\right)\le\frac{11}{5}\Rightarrow-\frac{9\sqrt{5}}{5}\le m\le\frac{11}{5}\)

22 tháng 4 2016

Thiểu năng hết rồi à? Chữ này xấu nhưng không đến mức không đọc được.

P/s: chưa học sin cos nên ko rõ

22 tháng 4 2016

Chữ bạn "Đẹp" đấy, mk ko hiểu gì cả

23 tháng 6 2016

bài này dễ thôi bạn

thay x= x+ k6pi vào hàm số y=f(x)= sin\(\frac{x}{3}\) ta dc

 sin\(\frac{x+k6pi}{3}\) =sin\(\frac{x}{3}+k2pi\) ( vì k2pi  "số chẵn lần của π" nên có thể bỏ được)

suy ra sin\(\frac{x}{3}\) =sin\(\frac{x}{3}\) =f(x)  ( dpcm)