Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(\frac{x}{y}-\frac{2}{3}\right)\left(\frac{x}{y}+\frac{2}{3}\right)=\left(\frac{x}{y}\right)^2-\left(\frac{2}{3}\right)^2\)
b,\(\left(2\sqrt{x}-\frac{2}{3}\right)\left(\frac{2}{3}+2\sqrt{x}\right)=\left(2\sqrt{x}-\frac{2}{3}\right)\left(2\sqrt{x}+\frac{2}{3}\right)\)
\(=\left(2\sqrt{x}\right)^2-\left(\frac{2}{3}\right)^2\)
Trả lời:
a, \(\left(\frac{x}{y}-\frac{2}{3}\right)\left(\frac{x}{y}+\frac{2}{3}\right)\)\(=\left(\frac{x}{y}\right)^2-\left(\frac{2}{3}\right)^2=\frac{x^2}{y^2}-\frac{4}{9}\)
b, \(\left(2\sqrt{x}-\frac{2}{3}\right)\left(\frac{2}{3}+2\sqrt{x}\right)=\left(2\sqrt{x}-\frac{2}{3}\right)\left(2\sqrt{x}+\frac{2}{3}\right)=\left(2\sqrt{x}\right)^2-\left(\frac{2}{3}\right)^2=4x-\frac{4}{9}\)
Trả lời:
a, \(\left(3\sqrt{x}-y\right)\left(3\sqrt{x}+y\right)=\left(3\sqrt{x}\right)^2-y^2=9x-y^2\)
b, \(\left(\sqrt{x}-2\sqrt{y}\right)\left(2\sqrt{y}+\sqrt{x}\right)=\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+2\sqrt{y}\right)=\left(\sqrt{x}\right)^2-\left(2\sqrt{y}\right)^2\)
\(=x-4y\)
\(S=1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\)
\(=\left[\dfrac{n\left(n+1\right)}{2}\right]^2=\dfrac{n^2\cdot\left(n+1\right)^2}{4}\)
\(a,\frac{1}{64}x^6-125y^3\)
\(=\left(\frac{1}{2}x\right)^6-\left(5y\right)^3\)
\(=\left(\frac{1}{4}x^2\right)^3-\left(5y\right)^3\)
\(\left(\frac{1}{4}x^2-5y\right)\left[\left(\frac{1}{4}x^2\right)^2+\left(\frac{1}{4}x^2\right).5y+25y^2\right]\)
\(b,27a^3-54a^2b+36ab^2-8b^3\)
\(=\left(3a\right)^3-3.2.\left(3a\right)^2b+3.3a.\left(2b\right)^2-\left(2b\right)^3\)
\(=\left(3a-2b\right)^3\)
\(c,x^6-x^6\)
\(=0\)
\(d,10x-25-x^2\)
\(=-x^2+10x-25\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x-5\right)^2\)
a) \(x^2+4x+3=\left(x^2+4x+4\right)-1=\left(x+2\right)^2-1^2=\left(x+1\right)\left(x+3\right)\) (mình sửa lại)
b) \(x^2+8x-9=\left(x^2+8x+16\right)-25=\left(x+4\right)^2-5^2=\left(x-1\right)\left(x+9\right)\)
c) \(3x^2+6x-9=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)
d) \(2x^2+x-3=2x^2-4x+2+5x-5=2\left(x^2-2x+1\right)+5\left(x-1\right)=2\left(x-1\right)^2+5\left(x-1\right)=\left(x-1\right)\left(2x+3\right)\)
\(a,\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)\)
\(\sqrt{x}^2-6^2\)
\(x-36\)
\(b,\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\)
\(\left(2\sqrt{x}\right)^2-1\)
\(4x-1\)
\(\left(\sqrt{x}-6\right)\left(6+\sqrt{x}\right)\)
\(=\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)\)
\(=\left(\sqrt{x}\right)^2-6^2\)
\(=x-36\)
b.\(\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\)
\(=\left(2\sqrt{x}\right)^2-1^2\)
\(=4x-1\)
\(A=x^2-6x+9+x^2+22x+121\)
\(=2x^2+16x+21=2\left(x^2+8x+16\right)-11\)
\(=2\left(x+4\right)^2-11\ge-11\)
\(M=\left(x^2-6xy+9y^2\right)+\left(x^2-10x+25\right)+4\left(x-3y\right)+2024\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-5\right)^2+2020\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+2020\ge2020\)
\(A=\left(x-3\right)^2+\left(x+11\right)^2=2x^2+16x+130\)
\(=2\left(x+4\right)^2+98\)
Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+4\right)^2+98\ge98\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
Vậy minA = 98 <=> x = - 4
\(B=2x^2+9y^2-6xy-6x+12y+2049\)
\(\Leftrightarrow B=\left(x^2-6xy+9y^2\right)+\left(4x-12y\right)+4+\left(x^2-10x+25\right)+2020\)
\(\Leftrightarrow B=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-5\right)^2+2020\)
\(\Leftrightarrow B=\left(x-3y+2\right)^2+\left(x-5\right)^2+2020\)
Vì \(\hept{\begin{cases}\left(x-3y+2\right)^2\ge0\forall x;y\\\left(x-5\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow B=\left(x-3y+2\right)^2+\left(x-5\right)^2+2020\ge2020\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(x-3y+2\right)^2=0\\\left(x-5\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-3y=-2\\x=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{3}\\x=5\end{cases}}\)
Vậy minB = 2020 <=> x = 5 ; y = 7/3
M3-\(3\sqrt{3}\)
=M3-\(\left(\sqrt{3}\right)^3\)
=(M-\(\sqrt{3}\))(M2+\(M\sqrt{3}\)+3)