Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Shwarz dạng Engel và \(a^2+b^2+c^2\ge ab+bc+ca\) có:
\(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}=\dfrac{x^4}{xy}+\dfrac{y^4}{yz}+\dfrac{z^4}{xz}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\)
\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge1\)
Dấu " = " khi x = y = z = \(\dfrac{1}{\sqrt{3}}\)
Vậy...
Cách khác nhé!/-/
Áp dụng BĐT Holder ta có:
\(\left(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\right)\left(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\right)\left(y^2+z^2+x^2\right)\ge\left(x^2+y^2+z^2\right)^3\)
Do đó \(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\ge x^2+y^2+z^2\ge1\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
Dạ 2 đề là 1 ạ tại em muốn ghi lại cho mọi người hiểu ạ
Coi như bước trên bạn đã làm đúng, giải pt vô tỉ thôi nhé:
TH1: \(x=y\)
\(\Rightarrow x^2+x+2=\sqrt{5x+5}+\sqrt{3x+2}\)
\(\Leftrightarrow x^2-x-1+\left(x+1-\sqrt{3x+2}\right)+\left(x+2-\sqrt{5x+5}\right)=0\)
\(\Leftrightarrow x^2-x-1+\dfrac{x^2-x-1}{x+1+\sqrt{3x+2}}+\dfrac{x^2-x-1}{x+2+\sqrt{5x+5}}=0\)
TH2: \(x=4y+3\)
Đây là trường hợp nghiệm ngoại lai, lẽ ra phải loại (khi bình phương lần 2 phương trình đầu, bạn quên điều kiện nên ko loại trường hợp này)
Dạ em cảm ơn thầy ạ, em ko nhìn ra cách chuyển thành x2 - x - 1 ạ @@
Xin lỗi ạ. Tại không giỏi đánh máy. Vậy bỏ câu này đi ạ. Chị giải câu kia giúp e nhé
\(\dfrac{x+y}{t+z}=\dfrac{3}{5}\)
=>5x+5y=3t+3z
=>5x-3t=3z-5y=0
=>5x=3t
=>x/t=3/5