K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 10:

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\notin\left\{2;-1\right\}\\y\ne-5\end{matrix}\right.\)

\(A=\dfrac{y+5}{x^2-4x+4}\cdot\dfrac{x^2-4}{x+1}\cdot\dfrac{x-2}{y+5}\)

\(=\dfrac{y+5}{y+5}\cdot\dfrac{\left(x^2-4\right)}{x^2-4x+4}\cdot\dfrac{x-2}{x+1}\)

\(=\dfrac{\left(x^2-4\right)\cdot\left(x-2\right)}{\left(x+1\right)\left(x^2-4x+4\right)}\)

\(=\dfrac{\left(x+2\right)\left(x-2\right)\cdot\left(x-2\right)}{\left(x+1\right)\left(x-2\right)^2}=\dfrac{x+2}{x+1}\)

b: \(A=\dfrac{x+2}{x+1}\)

=>A không phụ thuộc vào biến y

Khi x=1/2 thì \(A=\left(\dfrac{1}{2}+2\right):\left(\dfrac{1}{2}+1\right)=\dfrac{5}{2}:\dfrac{3}{2}=\dfrac{5}{2}\cdot\dfrac{2}{3}=\dfrac{5}{3}\)

Câu 12:

a: \(A=\dfrac{x}{x+3}+\dfrac{2x}{x-3}+\dfrac{9-3x^2}{x^2-9}\)

\(=\dfrac{x}{x+3}+\dfrac{2x}{x-3}+\dfrac{9-3x^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{x\left(x-3\right)+2x\left(x+3\right)+9-3x^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{x^2-3x+2x^2+6x+9-3x^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{3x+9}{\left(x+3\right)\left(x-3\right)}=\dfrac{3\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{3}{x-3}\)

b: Khi x=1 thì \(A=\dfrac{3}{1-3}=\dfrac{3}{-2}=-\dfrac{3}{2}\)

\(x+\dfrac{1}{3}=\dfrac{10}{3}\)

=>\(x=\dfrac{10}{3}-\dfrac{1}{3}\)

=>\(x=\dfrac{9}{3}=3\left(loại\right)\)

Vậy: Khi x=3 thì A không có giá trị

c: \(B=A\cdot\dfrac{x-3}{x^2-4x+5}\)

\(=\dfrac{3}{x-3}\cdot\dfrac{x-3}{x^2-4x+5}\)

\(=\dfrac{3}{x^2-4x+5}\)

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1>=1\forall x\) thỏa mãn ĐKXĐ

=>\(B=\dfrac{3}{x^2-4x+5}< =\dfrac{3}{1}=3\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x-2=0

=>x=2

8 tháng 10 2016

đề như nào vậy bạn

8 tháng 10 2016

nó yêu cầu tính hay phân tích

12 tháng 11 2021

a: Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

DO đó: AMHN là hình chữ nhật

16 tháng 12 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: ta có: ADHE là hình chữ nhật

=>AH=DE(1)

Ta có: ΔAHM vuông tại H

=>AH<AM(2)

Từ (1) và (2) suy ra DE<AM

c: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nênMA=MC

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\)

Ta có: AEHD là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{B}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AED}=\widehat{B}\)

Ta có: \(\widehat{AED}+\widehat{MAC}\)

\(=\widehat{B}+\widehat{C}=90^0\)

=>DE\(\perp\)AM

d:Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường trung tuyến ứng với cạnh BC

=>H trùng với M

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là phân giác của góc DAE

Xét hình chữ nhật ADHE có AH là phân giác của góc DAE

nên ADHE là hình vuông

=>Chu vi là \(C=3\cdot4=12cm\) và diện tích \(S=3^2=9\left(cm^2\right)\)

Bạn cần bài nào vậy bạn?

13 tháng 8 2021

mình cần tất cả lun ý ạ :>

15 tháng 11 2021

\(a,=x^2+x+4x+4=\left(x+1\right)\left(x+4\right)\\ b,=x^2+2x-3x-6=\left(x-3\right)\left(x+2\right)\\ c,=x^2-2x-3x+6=\left(x-2\right)\left(x-3\right)\\ d,=3\left(x^2-2x+5x-10\right)=3\left(x-2\right)\left(x+5\right)\\ e,=-3x^2+6x-x+2=\left(x-2\right)\left(1-3x\right)\\ f,=x^2-x-6x+6=\left(x-1\right)\left(x-6\right)\\ h,=4\left(x^2-3x-6x+18\right)=4\left(x-3\right)\left(x-6\right)\\ i,=3\left(3x^2-3x-8x+5\right)=3\left(x-1\right)\left(3x-8\right)\\ k,=-\left(2x^2+x+4x+2\right)=-\left(2x+1\right)\left(x+2\right)\\ l,=x^2-2xy-5xy+10y^2=\left(x-2y\right)\left(x-5y\right)\\ m,=x^2-xy-2xy+2y^2=\left(x-y\right)\left(x-2y\right)\\ n,=x^2+xy-3xy-3y^2=\left(x+y\right)\left(x-3y\right)\)

15 tháng 11 2021

Bào quan riboxom trong chất tế bào có chức năng gì? 

30 tháng 9 2021

Giúp em đi đc ko ạ

Câu 1: 

a) Xét ΔABC có 

M\(\in\)AB(gt)

N\(\in\)AC(gt)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{3}\right)\)

Do đó: MN//BC(Định lí Ta lét đảo)

3 tháng 3 2021

Câu 1:

A B C M N K

a) Xét \(\Delta ABC\) có:

\(\left\{{}\begin{matrix}\dfrac{AM}{AB}=\dfrac{2}{6}=\dfrac{1}{3}\\\dfrac{AN}{AC}=\dfrac{3}{9}=\dfrac{1}{3}\end{matrix}\right.\)

⇒ \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{3}\right)\)

⇒ MN // BC (Theo định lí Ta-lét đảo)      \(\left(ĐPCM\right)\)

b)

Xét \(\Delta ABC\) có MN//BC (cmt)

 \(\Rightarrow\dfrac{AM}{AB}=\dfrac{MN}{BC}\)  ⇒ \(\dfrac{AM}{MN}=\dfrac{AB}{BC}\)           \(\left(1\right)\)

Xét \(\Delta ABC\) có NK//AB (gt)

⇒ \(\dfrac{AB}{NK}=\dfrac{BC}{CK}\) ⇒ \(\dfrac{AB}{BC}=\dfrac{NK}{CK}\)                (2)

Từ (1) và (2)  ⇒ \(\dfrac{AM}{MN}=\dfrac{NK}{CK}\)

⇒ \(AM.KC=NK.MN\)               \(\left(ĐPCM\right)\)