Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình giải thích từ dấu tương đương 2 nha.
\(\dfrac{2x\left(x-2\right)+2x}{2x\left(x-1\right)\left(x-2\right)}=\dfrac{3\left(x-1\right)\left(x-2\right)}{2x\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{2x^2-4x+2x}{2x\left(x-1\right)\left(x-2\right)}-\dfrac{3\left(x-1\right)\left(x-2\right)}{2x\left(x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2-2x-3\left(x^2-2x-x+2\right)}{2x\left(x-1\right)\left(x-2\right)}=0\)
Tới đây phải khử mẫu pt bằng cách lấy mẫu \(2x\left(x-1\right)\left(x-2\right)\) nhân với 0 bên vế phải thì pt mới đơn giản để giải tiếp được.
\(\Leftrightarrow2x^2-2x-3x^2+6x+3x-6=0\)
\(\Leftrightarrow2x^2-2x=3x^2-9x+6\)
Tới đây là ra được dấu tương đương 3 rồi đó.
Bài này sau khi tính toán thì điểm rơi b lẻ (phân số) nên chắc ko nhẩm được đâu em (trừ phi biết trước đáp án), nếu trong phòng thi chỉ có tính toán bằng tay thôi. Tính toán điểm rơi dạng này cũng khá lẹ, ko mất thời gian lắm.
Cái này bạn thay x=0 và y=1 vào rồi ta sẽ có thế này nha:
(m+1)*0+n=1
=>0+n=1
=>n=1
\(\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}\\ =\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\\ =\left|\sqrt{3}-\sqrt{2}\right|-\left|\sqrt{3}+\sqrt{2}\right|\\ =\sqrt{3}-\sqrt{2}-\sqrt{3}-\sqrt{2}\\ =-2\sqrt{2}\)
Bài 1:
a: Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
hay \(\widehat{BOC}=135^0\)
Bài 2:
Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+y=3\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+2y=6\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Thay x=1 và y=1 vào (d), ta được:
\(2m-1+1=5m\)
hay m=0
a,mấy đoạn dấu : dấu+ trong đề hơi khó nhìn
\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(P=\left[\dfrac{\sqrt{x}.\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left(\dfrac{\sqrt{x}-1+2}{x-1}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{x-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}=\dfrac{x-1}{\sqrt{x}}\)
b, \(P>0=>\dfrac{x-1}{\sqrt{x}}>0=>x-1>0< =>x>1\)(tm)
Vậy \(x>1\) .....
\(\)
Lời giải:
$A=1+\frac{1}{\sqrt{x}-3}$
Để $A$ max thì $\sqrt{x}-3$ phải dương và nhỏ nhất.
Với $x$ nguyên, để $\sqrt{x}-3$ dương và nhỏ nhất thì $x=10$
Khi đó, $A_{\max}=1+\frac{1}{\sqrt{10}-3}=4+\sqrt{10}$
------------------
$B=1+\frac{1}{\sqrt{x}-2}$.
Lập luận tương tự phần a, ta thấy với $x$ nguyên không âm thì $\sqrt{x}-2$ đạt giá trị dương nhỏ nhất tại $x=5$
$\Rightarrow B_{\max}=1+\frac{1}{\sqrt{5}-2}=3+\sqrt{5}$
20.
Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow P=\sum\dfrac{1}{a^3+b^3+1}\le\sum\dfrac{1}{ab\left(a+b\right)+1}=\sum\dfrac{abc}{ab\left(a+b\right)+abc}=\sum\dfrac{c}{a+b+c}=1\)
21.
Đề bài sai, biểu thức này ko tồn tại min hay max (nó chỉ tồn tại khi x;y;z là số thực không âm. Khi đó min P xảy ra tại \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\) và hoán vị)
22.
Đề bài sai, biểu thức không tồn tại min. Nó chỉ tồn tại khi có thêm điều kiện x;y;z là độ dài 3 cạnh của 1 tam giác (em cứ thay giá trị \(x=2;y=1.9999;z=8.0001\) vào tính giá trị P sẽ hiểu tại sao đề sai)