K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2019

Thay \(x=-4\) vào pt elip ta được:

\(\frac{y^2}{9}=1-\frac{16}{25}=\frac{9}{25}\Rightarrow\left[{}\begin{matrix}y=\frac{9}{5}\\y=-\frac{9}{5}\end{matrix}\right.\)

\(\Rightarrow MN=2.\frac{9}{5}=\frac{18}{5}\)

1 tháng 10 2019

Bài 2: 

a: \(=248+2064-12-236\)

\(=12-12+2064=2064\)

b: \(=-298-302-300=-600-300=-900\)

c: \(=5-7+9-11+13-15=-2-2-2=-6\)

d: \(=456+58-456-38=20\)

22 tháng 5 2020

c) viết pttt của (C) và _|_ với △ ( sửa đề )

E cần gấp lắm ạ. ai làm giúp e với help meeee 1/ Cho ABC có trực tâm H nội tiếp đt (C) đường cao AH cắt (C) tại Q(2;2) khác A , BH: x+3y-24=0 Gọi N là trung điểm AH biết A thuộc d: x+y-16=0 , cos BNQ= 3/5. E là chân đường cao kẻ từ B thỏa mãn xE>0 tìm tọa độ ABC 2/ ABC có D(4;5) là hình chiếu của A lên BC. AD cắt đtron ngoại tiếp ABC tại điểm thứ hai Q, đtron ngoại tiếp BDQ có pt (x-3)^2 +(y-3)^2=5 biết AC đi qua N(7;5) A...
Đọc tiếp

E cần gấp lắm ạ. ai làm giúp e với help meeee

1/ Cho ABC có trực tâm H nội tiếp đt (C) đường cao AH cắt (C) tại Q(2;2) khác A , BH: x+3y-24=0 Gọi N là trung điểm AH biết A thuộc d: x+y-16=0 , cos BNQ= 3/5. E là chân đường cao kẻ từ B thỏa mãn xE>0 tìm tọa độ ABC

2/ ABC có D(4;5) là hình chiếu của A lên BC. AD cắt đtron ngoại tiếp ABC tại điểm thứ hai Q, đtron ngoại tiếp BDQ có pt (x-3)^2 +(y-3)^2=5 biết AC đi qua N(7;5) A thuộc d: 3x-y+5=0 Tìm tọa độ các đỉnh tam giác abc
3/ Cho ABC nhọn có trực tâm H ,M(7;1), N(4;6) là trung điểm BC, AH. gọi E thuộc d:x-y-1=0 là hình chiếu của B lên AC, F(3;5) thuộc AB .tìm tọa độ A, B,C biết xE>5
4/ Cho đtron (C): (x-1)^2 + (y-2)^2=5 một điểm A nằm ngoài (C), qua A kẻ 2 tiếp tuyến AB, AC đến (C) với B ,C là tiếp điểm. tìm tọa độ A B C biết ABC có trực tâm H thuộc (C) và A thuộc d: x-y-1=0 xA>0
5/ ABC có trực tâm H tâm đtron ngoại tiếp I(1/2;3/2) gọi K là trung điểm AH, đthang qua K vuông góc với BK cắt AC tại P. biết B(-2;-1) , P(13/6;3/2) tìm A,C
6/ ABC có trực tâm H(5;5) trung điểm BC là M(9/2;7/2) gọi E,F là hình chiếu của B,C lên AC,AB. đt EF cắt BC tại P(0;8) tìm tọa độ A,B,C

7/ ABC nội tiếp đtron tâm I(1;2) đường phân giác trong góc A đi qua gốc toạ độ cắt BC tại D, cắt (I) tại E. Đtron ngoại tiếp ADI cắt EI tại F(1;1) tìm toạ độ tam giác ABC biết đt chứa cạnh BC có pt: y+1=0

0
1 tháng 5 2020

9/ \(\Delta//\left(d\right)\Rightarrow\overrightarrow{n_d}=\left(1;-2\right)\)

\(\Rightarrow\left(d\right):\left(x-1\right)-2\left(y+1\right)=0\)

\(\left(d\right):x-2y-3=0\)

10/ \(\overrightarrow{BC}=\left(-6;8\right)\)

PT đường cao AA' nhận vecto BC làm vtpt

\(\Rightarrow\overrightarrow{n_{AA'}}=\overrightarrow{u_{BC}}=\left(-6;8\right)\)

\(AA':-6\left(x-1\right)+8\left(y+2\right)=0\)

\(AA'=-6x+8y+22=0\)

18/ Trong quá trình làm bài, mình rút ra kết luận sau: Nếu một đường thẳng chắn 2 trục toạ độ 2 đoạn có độ dài bằng nhau thì ptđt có hệ số góc là \(k=\pm1\)

Để mình chứng minh lại:

Đường thẳng có dạng : y= ax+b

\(\Rightarrow\) Nó cắt trục Oy tại điểm có toạ độ là \(\left(0;b\right)\)

Và cắt trục Ox tại điểm có toạ độ là \(\left(-\frac{b}{a};0\right)\)

Vì khoảng cách từ O đến từng điểm là như nhau

\(\Rightarrow\left|b\right|=\left|\frac{b}{a}\right|\Leftrightarrow\left[{}\begin{matrix}b=\frac{b}{a}\\b=-\frac{b}{a}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{u}=\left(1;1\right)\\\overrightarrow{u}=\left(1;-1\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(d\right):x-2+y+3=0\\\left(d\right):x-2-y-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left(d\right):x+y+1=0\\\left(d\right):x-y-5=0\end{matrix}\right.\)