Cho elíp có phương trình 16x2
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: ĐKXĐ: x>=-1

\(\sqrt{x+1}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(x+1\right)^2=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\cdot x=0\\x>=-1\end{matrix}\right.\Leftrightarrow x\in\left\{0;-1\right\}\)

c: \(\sqrt{x-1}=1-x\)

ĐKXĐ: \(\left\{{}\begin{matrix}x-1>=0\\1-x< =0\end{matrix}\right.\Leftrightarrow x=1\)

Do đó: x=1 là nghiệm của phương trình

d: \(2x+3+\dfrac{4}{x-1}=\dfrac{x^2+3}{x-1}\)(ĐKXĐ: x<>1)

\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)+4=x^2+3\)

\(\Leftrightarrow2x^2-2x+3x-3+4-x^2-3=0\)

\(\Leftrightarrow x^2+x-2=0\)

=>(x+2)(x-1)=0

=>x=-2(nhận) hoặc x=1(loại)

 

29 tháng 8 2017

Akai Haruma

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

NV
22 tháng 11 2019

a/ ĐKXĐ: \(0\le x\le1\)

Đặt \(\sqrt{x}+\sqrt{1-x}=a>0\Rightarrow\sqrt{x-x^2}=\frac{a^2-1}{2}\)

Ta được:

\(1+\frac{a^2-1}{3}=a\Leftrightarrow a^2-3a+2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x\left(1-x\right)}=0\\2\sqrt{x-x^2}=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\left(1-x\right)=0\\-4x^2+4x-9=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b/ ĐKXĐ: ...

Đặt \(\sqrt{x+5}=a\ge0\Rightarrow a^2-x=5\)

\(x^2+a=a^2-x\)

\(\Leftrightarrow x^2-a^2+a+x=0\)

\(\Leftrightarrow\left(a+x\right)\left(x-a+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=-x\left(x\le0\right)\\\sqrt{x+5}=x+1\left(x\ge-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2\left(x\le0\right)\\x+5=x^2+2x+1\left(x\ge-1\right)\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
22 tháng 11 2019

c/ ĐKXĐ: \(2\le x\le5\)

\(\Leftrightarrow\sqrt{3x-3}=\sqrt{2x-4}+\sqrt{5-x}\)

\(\Leftrightarrow3x-3=x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}\)

\(\Leftrightarrow x-2=\sqrt{\left(2x-4\right)\left(5-x\right)}\)

\(\Leftrightarrow\left(x-2\right)^2=\left(2x-4\right)\left(5-x\right)\)

\(\Leftrightarrow\left(x-2\right)\left(3x-12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

NV
15 tháng 4 2020

a/ \(\Leftrightarrow\left(x^2+4x+3\right)^2>\left(x^2-4x-5\right)^2\)

\(\Leftrightarrow\left(x^2+4x+3\right)^2-\left(x^2-4x-5\right)^2>0\)

\(\Leftrightarrow\left(8x-8\right)\left(2x^2-2\right)>0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)^2>0\)

\(\Rightarrow\left\{{}\begin{matrix}x>-1\\x\ne1\end{matrix}\right.\)

b/ \(\left|x^2-3x+2\right|-x^2+2x>0\)

- Với \(1< x< 2\Rightarrow x^2-3x+2< 0\) BPT tương đương:

\(-x^2+3x-2-x^2+2x>0\)

\(\Leftrightarrow-2x^2+5x-2>0\Rightarrow\frac{1}{2}< x< 2\Rightarrow1< x< 2\)

- Với \(\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\) BPT tương đương:

\(x^2-3x+2-x^2+2x>0\)

\(\Leftrightarrow-x+2>0\Rightarrow x< 2\Rightarrow x\le1\)

Vậy nghiệm của BPT đã cho là \(x< 2\)

30 tháng 12 2022

3: =>a^2c^2+a^2d^2+b^2c^2+b^2d^2>=a^2c^2+2abcd+b^2d^2

=>a^2d^2-2abcd+b^2c^2>=0

=>(ad-bc)^2>=0(luôn đúng)

7 tháng 12 2020

a, ĐKXĐ: \(x\ge3\)

\(pt\Leftrightarrow\sqrt{x-3}\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\x-1=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\\x=2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

b, ĐKXĐ: \(x\ge-1\)

\(pt\Leftrightarrow\sqrt{x+1}\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=0\\x+1=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

c, ĐKXĐ: \(x>2\)

\(pt\Leftrightarrow\frac{x}{\sqrt{x-2}}=\frac{3-x}{\sqrt{x-2}}\)

\(\Leftrightarrow x=3-x\)

\(\Leftrightarrow x=\frac{3}{2}\left(l\right)\)

\(\Rightarrow\) Phương trình vô số nghiệm

d, ĐKXĐ: \(x>-1\)

\(pt\Leftrightarrow\frac{x^2-4}{\sqrt{x+1}}=\frac{x+3+x+1}{\sqrt{x+1}}\)

\(\Leftrightarrow x^2-4=2x+4\)

\(\Leftrightarrow x^2-2x-8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=-2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=4\)