\(=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{2016}{3^{2016}}\)Chung minh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

1. Tìm \(x\):

a) \(\dfrac{x}{5}=\dfrac{5}{6}+\dfrac{-19}{30}\)

\(\dfrac{x}{5}=\dfrac{1}{5}\)

\(\Rightarrow x=1\)

b) \(\dfrac{-5}{6}-x=\dfrac{7}{12}-\dfrac{1}{3}.x\)

\(\dfrac{-5}{6}-\dfrac{7}{12}=x-\dfrac{1}{3}.x\)

\(x-\dfrac{1}{3}.x=\dfrac{-17}{12}\)

\(\dfrac{2}{3}.x=\dfrac{-17}{12}\)

\(x=\dfrac{-17}{12}:\dfrac{2}{3}\)

\(x=\dfrac{-17}{8}\)

c) \(2016^3.2016^x=2016^8\)

\(2016^x=2016^8:2016^3\)

\(2016^x=2016^{8-3}\)

\(2016^x=2016^5\)

\(\Rightarrow x=5\)

d) \(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=3\dfrac{1}{2}\)

\(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=\dfrac{7}{2}\)

\(\left(x+\dfrac{3}{4}\right)=\dfrac{7}{2}.\dfrac{5}{2}\)

\(x+\dfrac{3}{4}=\dfrac{35}{4}\)

\(x=\dfrac{35}{4}-\dfrac{3}{4}\)

\(x=\dfrac{32}{4}=8\)

e) \(\left(2,8.x-2^5\right):\dfrac{2}{3}=3^2\)

\(\left(2,8.x-2^5\right)=9.\dfrac{2}{3}\)

\(2,8.x-2^5=6\)

\(2,8.x=6+32\)

\(2,8.x=38\)

\(x=38:2,8\)

\(x=\dfrac{95}{7}\)

f) \(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{2}{5}\)

\(\dfrac{4}{7}.x=\dfrac{2}{5}+\dfrac{2}{3}\)

\(\dfrac{4}{7}.x=\dfrac{16}{15}\)

\(x=\dfrac{16}{15}:\dfrac{4}{7}\)

\(x=\dfrac{28}{15}\)

g) \(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{28}\)

\(\left(\dfrac{3x}{7}+1\right)=\dfrac{-1}{28}.\left(-4\right)\)

\(\dfrac{3x}{7}+1=\dfrac{1}{7}\)

\(\dfrac{3x}{7}=\dfrac{1}{7}-1\)

\(\dfrac{3x}{7}=\dfrac{-6}{7}\)

\(\Rightarrow3x=-6\)

\(x=\left(-6\right):3\)

\(x=-2\)

2 tháng 4 2017

2. Thực hiện phép tính:

a) \(\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{2}{3}-\dfrac{1}{3}:\dfrac{3}{4}+1\dfrac{4}{5}\)

\(=\dfrac{1}{2}.\left(\dfrac{2}{3}+1\right)-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)

\(=\dfrac{1}{2}.\dfrac{5}{3}-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)

\(=\dfrac{5}{6}-\dfrac{4}{9}+\dfrac{9}{5}\)

\(=\dfrac{7}{18}+\dfrac{9}{5}\)

\(=\dfrac{197}{90}\)

b) \(\dfrac{7.5^2-7^2}{7.24+21}\)

\(=\dfrac{7.25-7.7}{7.24+7.3}\)

\(=\dfrac{7.\left(25-7\right)}{7.\left(24+3\right)}\)

\(=\dfrac{7.18}{7.27}\)

\(=\dfrac{2}{3}\)

c) \(\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{-4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}\)

\(=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}:\dfrac{7}{12}\)

\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)

\(=\dfrac{2}{3}+\dfrac{2}{9}\)

\(=\dfrac{8}{9}\)

12 tháng 5 2017

\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{2016}\left(1+2+...+2016\right)\)\(=1+\dfrac{2.3}{2.2}+\dfrac{3.4}{3.2}+...+\dfrac{2016.2017}{2016.2}\)

\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{2017}{2}\)

\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{2017}{2}\)

\(=\dfrac{1}{2}\left(2+3+...+2017\right)\)

Đặt \(A=2+3+...+2017\)

\(=2017+2016+...+2\)

\(\Rightarrow2A=\left(2+2017\right)+\left(3+2016\right)+...+\left(2017+2\right)\) ( 2016 cặp số )

\(\Rightarrow2A=2019+2019+...+2019\) ( 2016 số )

\(\Rightarrow2A=4070304\)

\(\Rightarrow A=2035152\)

\(\Rightarrow P=1017576\)

Vậy...

13 tháng 5 2017

P= 1+1/2.3+1/3.6+...+1/2016.2033136

P= 1+3/2+2+...+2017/2

P= 2/2+3/2+4/2+...+2017/2

P=\(\dfrac{2+3+4+...+2017}{2}\)

P= \(\dfrac{2035152}{2}\)

P= 1017576

bài hay đấy để mk thử giải

à bạn xem lại câu a hộ mk với

2 tháng 4 2017

Đặt :

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...................+\dfrac{1}{3^{2016}}\)

\(3A=3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...............+\dfrac{1}{3^{2016}}\right)\)

\(3A=\dfrac{3}{3}+\dfrac{3}{3^2}+\dfrac{3}{3^3}+.................+\dfrac{3}{3^{2016}}\)

\(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+......................+\dfrac{1}{3^{2015}}\)

\(3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+..............+\dfrac{1}{3^{2015}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+.............+\dfrac{1}{3^{2016}}\right)\)

\(A=1-\dfrac{1}{3^{2016}}\)

\(A=\dfrac{3^{2016}-1}{3^{2016}}\)

~~ Chúc bn học tốt ~~

2 tháng 4 2017

Đặt :

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2016}}\)

\(\dfrac{1}{3}A=\dfrac{1}{3}.\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2016}}\right)\)

\(\dfrac{1}{3}A=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{2017}}\)

\(\dfrac{1}{3}A-A=\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{2017}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2016}}\right)\)

\(-\dfrac{2}{3}A=\dfrac{1}{3^{2017}}-\dfrac{1}{3}\)

\(A=\dfrac{\dfrac{1}{3^{2017}}-\dfrac{1}{3}}{-\dfrac{2}{3}}\).