Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,3/10=0,3`
`3/100=0,03`
`4 25/100=4 1/4=4,25`
`2002/1000=2,002`
`b,1/4=0,25`
`3/5=0,6`
`7/8=0,875`
`1 1/2=1,5`
Bài 3
a,26/100+0,009+41/100+0,24
0,26+0,09+0,41+0,24
(0,26+0,24)+(0,09+0,41)
0,5+0,5
=1
b,9+1/4+6+2/7+7+3/5+8+2/3+2/5+1/3+5/7+3/4
(9+6+7+8)+(2/7+5/7)+(1/4+3/4)+(3/5+2/5)+(2/3+1/3)
30+1+1+1+1
=34
Bài 4,5 khó quá mik ko bít lamf^^))
Bài 4: a, \(\dfrac{2008}{2009}\) < 1; \(\dfrac{10}{9}\) > 1
\(\dfrac{2008}{2009}\) < \(\dfrac{10}{9}\)
b, \(\dfrac{1}{a+1}\) và \(\dfrac{1}{a-1}\)
Ta có: a + 1 > a - 1 ⇒ \(\dfrac{1}{a+1}\) < \(\dfrac{1}{a-1}\)
Giải:
\(\left(1-\dfrac{3}{4}\right).\left(1-\dfrac{3}{7}\right).\left(1-\dfrac{3}{10}\right).\left(1-\dfrac{3}{13}\right).....\left(1-\dfrac{3}{97}\right).\left(1-\dfrac{3}{100}\right)\)
\(=\dfrac{1}{4}.\dfrac{4}{7}.\dfrac{7}{10}.\dfrac{10}{13}.....\dfrac{94}{97}.\dfrac{97}{100}\)
\(=\dfrac{1.4.7.10.....94.97}{4.7.10.13.....97.100}\)
\(=\dfrac{1}{100}\)
`4 1/5 xx 2 1/4`
`= 21/5 xx 9/4`
`= 189/20`
__
`4 1/5 : 2 1/4`
`= 21/5 : 9/4`
`= 21/5 xx 4/9`
`=84/45`
`=28/15`
__
`3 3/5 xx 1 2/3`
`= 18/5 xx 5/3`
`= 90/15`
`=6`
__
`3 3/5 : 1 2/3`
`= 18/5 : 5/3`
`= 18/5 xx 3/5`
`=54/25`
\(4\dfrac{1}{5}\times2\dfrac{1}{4}\\ =\dfrac{21}{5}\times\dfrac{9}{4}\\ =\dfrac{21\times9}{5\times4}\\ =\dfrac{189}{20}\)
\(3\dfrac{3}{5}\times1\dfrac{2}{3}\\ =\dfrac{18}{5}\times\dfrac{5}{3}\\ =\dfrac{18\times5}{5\times3}\\ =\dfrac{90}{15}\\ =6\)
\(4\dfrac{1}{5}:2\dfrac{1}{4}\\ =\dfrac{21}{5}:\dfrac{9}{4}\\ =\dfrac{21}{5}\times\dfrac{4}{9}\\ =\dfrac{21\times4}{5\times9}\\ =\dfrac{84}{45}\\ =\dfrac{28}{15}\)
\(3\dfrac{3}{5}:1\dfrac{2}{3}\\ =\dfrac{18}{5}:\dfrac{5}{3}\\ =\dfrac{18}{5}\times\dfrac{3}{5}\\ =\dfrac{18\times3}{5\times5}\\ =\dfrac{54}{25}\)
Bài 7: Tính
a) \(4\dfrac{2}{5}\times8\dfrac{3}{4}-2\dfrac{3}{4}\)
\(=\dfrac{22}{5}\times\dfrac{35}{4}-\dfrac{11}{4}\)
\(=\dfrac{77}{2}-\dfrac{11}{4}\)
\(=\dfrac{143}{4}\)
b) \(2\dfrac{2}{3}+1\dfrac{2}{5}-\dfrac{2}{15}\)
\(=\dfrac{8}{3}+\dfrac{7}{5}-\dfrac{2}{15}\)
\(=\dfrac{47}{15}-\dfrac{2}{15}\)
\(=\dfrac{45}{15}=3\)
c) \(3\dfrac{1}{3}-2\dfrac{2}{3}+1\dfrac{5}{6}\)
\(=\dfrac{10}{3}-\dfrac{8}{3}+\dfrac{11}{6}\)
\(=\dfrac{2}{3}+\dfrac{11}{6}\)
\(=\dfrac{15}{6}\)
a) \(...=\dfrac{19}{8}:\dfrac{15}{4}x\dfrac{8}{3}=\dfrac{19}{8}x\dfrac{4}{15}x\dfrac{8}{3}=\dfrac{76}{45}\)
b) \(...=\dfrac{3}{2}:\dfrac{7}{3}:\dfrac{17}{6}=\dfrac{3}{2}x\dfrac{3}{7}x\dfrac{6}{17}=\dfrac{27}{119}\)
c) \(...=\dfrac{14}{3}-\dfrac{7}{4}:\dfrac{12}{5}=\dfrac{14}{3}-\dfrac{7}{4}x\dfrac{5}{12}=\dfrac{14}{3}-\dfrac{35}{48}=\dfrac{14x16}{48}-\dfrac{35}{48}=\dfrac{224}{48}-\dfrac{35}{48}=\dfrac{189}{48}=\dfrac{63}{16}\)
\(a,2\dfrac{3}{8}:3\dfrac{3}{4}\times2\dfrac{2}{3}\\ =\dfrac{2\times8+3}{8}:\dfrac{3\times4+3}{4}\times\dfrac{2\times3+2}{3}\\ =\dfrac{19}{8}:\dfrac{15}{4}\times\dfrac{8}{3}\\ =\dfrac{19\times4\times8}{8\times15\times3}=\dfrac{76}{45}\)
\(b,1\dfrac{1}{2}:\dfrac{7}{3}:2\dfrac{5}{6}\\ =\dfrac{3}{2}:\dfrac{7}{3}:\dfrac{2\times6+5}{6}\\ =\dfrac{3}{2}\times\dfrac{3}{7}\times\dfrac{6}{17}\\ =\dfrac{54}{238}=\dfrac{27}{119}\)
\(c,4\dfrac{2}{3}-1\dfrac{3}{4}:2\dfrac{2}{5}\\ =\dfrac{4\times3+2}{3}-\dfrac{1\times4+3}{4}:\dfrac{2\times5+2}{5}\\ =\dfrac{14}{3}-\dfrac{7}{4}:\dfrac{12}{5}\\ =\dfrac{14}{3}-\dfrac{7}{4}.\dfrac{5}{12}\\ =\dfrac{14}{3}-\dfrac{35}{48}\\ =\dfrac{14\times16-35}{48}=\dfrac{189}{48}=\dfrac{63}{16}\)
C=13+232+333+434+...+1003100�=13+232+333+434+...+1003100
3C=1+23+332+433+...+1003993�=1+23+332+433+...+100399
3C−C=(1+23+332+433+...+100399)−(13+232+333+434+...+1003100)3�−�=(1+23+332+433+...+100399)−(13+232+333+434+...+1003100)
2C=1+13+132+133+...+1399−10031002�=1+13+132+133+...+1399−1003100
6C=3+1+13+132+...+1398−1003996�=3+1+13+132+...+1398−100399
6C−2C=(3+1+13+132+...+1398−100399)−(1+13+132+133+...+1399−1003100)6�−2�=(3+1+13+132+...+1398−100399)−(1+13+132+133+...+1399−1003100)
4C=3−100399−1399+10031004�=3−100399−1399+1003100
4C=3−3003100−33100+10031004�=3−3003100−33100+1003100
4C=3−2033100<34�=3−2033100<3
⇒C<34(đpcm)
k nha