K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2023

C gbcgghfdhsgxwvdgdrgdtdgst

11 tháng 4

  VZFVFVNCXN XHF 

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

17 tháng 12 2023

  A = 1 +  3  + 32 + 33 + ... + 3100

3A = 3 + 32 + 33 +34+ .... + 3101

3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)

2A     = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100

2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)

2A = 3101 - 1

A = \(\dfrac{3^{101}-1}{2}\)

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Bài 1:

$B=1+3+3^2+3^3+...+3^{100}$

$=1+(3+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})$

$=1+3(1+3)+3^3(1+3)+...+3^{99}(1+3)$

$=1+(1+3)(3+3^3+...+3^{99})=1+4(3+3^3+....+3^{99})$

$\Rightarrow B$ chia 4 dư 1.

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Bài 2:

$C=5-5^2+5^3-5^4+...+5^{2023}-5^{2024}$

$5C=5^2-5^3+5^4-5^5+...+5^{2024}-5^{2025}$

$\Rightarrow C+5C=5-5^{2025}$

$6C=5-5^{2025}$

$C=\frac{5-5^{2025}}{6}$

27 tháng 6 2023

Đặt A=1/3+2/3^2+...+100/3^100
=>3A=1+2/3+...+100/2^99
=>3A-A=1+(2/3-1/3)+(3/32-2/32)+...(100/299-99/2^99)-100/3100

=>2A=1+1/3+1/3+1/32+...+1/399-100/3100

Ta lại đặt tiếp B=1/3+...+1/399

tiếp tục làm 3B=1+...+1/398

=>3B-B=1+...+1/398-1/3+...+1/399=1-1/3^99

=>B=(1-1/3^99)/2 (đến đây viết mũ là ^ vì lười)

đến đây ta có 2A=1+(1-1/3^99)/2 -100/3^100

=(3^100-100)/3^100 +(1-1/3^99)/2

quy đồng lên nó thành

2A=2x3^100-200/3^100x2 +(3^99-1)/3^99x2

2A=(2x3^100-200+3^100-3)/3^100x2

     =(3^101-203)/3^100x2

     ta c/m 2a<3/2 là ok

*nhân chéo lên =>2(3^101-203)<3^101x2

đồng nghĩa với 2x3^101 -406<3^101x2 (điều này luôn đúng)

=>bài toán đc chứng minh