Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác ACE và tam giác AKE có
góc ACE = góc AKE (=90 độ)
góc A1 = góc A2 (AE là tia phân giác của góc BAC)
AE chung
=> tam giác ACE = tam giác AKE (cạnh huyền góc nhọn)
=> AC = AK ( 2 cạnh tương ứng)
b) ta có: trong tam giác vuông BCA có góc B + góc A = 90 độ
=> góc B = 90 độ - góc A = 90 độ - 60 độ = 30 độ
Mà góc EAB = 30 độ
=> tam giác EBA cân tại E (định nghĩa tam giác cân)
Vì EK vuông góc với AB (gt)
nên EK cũng là đường trung trực của tam giác AEB.
=> KA = KB
a: Xét ΔAME và ΔDMB có
MA=MD
góc AME=góc DMB
ME=MB
Do đó; ΔAME=ΔDMB
b: ΔAME=ΔDMB
nên góc MAE=góc MDB
=>AE//BD
=>AE//BC
Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
nên AFDC là hình bình hành
=>AF//DC
=>AF//BC
=>F,A,E thẳng hàng
1)Từ đề bài:
`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`
`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`
`<=>a=b=c-2`
`ab+bc+ca=abc`
`<=>1/a+1/b+1/c=1`
`<=>(1/a+1/b+1/c)^2=1`
`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`
`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`
`a+b+c=0`
Chia 2 vế cho `abc`
`=>1/(ab)+1/(bc)+1/(ca)=0`
`=>2/(ab)+2/(bc)+2/(ca)=0`
`=>1/a^2+1/b^2+1/c^2=1-0=1`
e, Trên tia đối của tia DH lấy điểm F sao cho DF = DH = 1/2 FH
Xét tam giác ADF và BDH có :
AD = BD ( cmt )
ADF = BDH ( 2 góc đối đỉnh )
DF = DH ( cách vẽ )
=> Tam giác ADF = tam giác BDH ( c.g.c )
=> FH = AB ( 2 cạnh tương ứng )
Mà DF = DH = 1/2 FH ( cách vẽ )
=> HD = 1/2 AB ( đpcm )
a: góc ABF=1/2*góc ABC
góc ACE=1/2*góc ACB
mà góc ACB=góc ABC
nên góc ABF=góc ACE
b: Xét ΔABF và ΔACE có
góc ABF=góc ACE
AB=AC
góc BAF chung
=>ΔABF=ΔACE
=>AF=AE
=>ΔAFE cân tại A
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
=>IB=IC
IB+IF=BF
IC+IE=CE
mà BF=CE và IB=IC
nên IF=IE
=>ΔIFE cân tại I
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{10}=\dfrac{a-b+c}{9-12+10}=\dfrac{35}{7}=5\)
Do đó: a=45; b=60; c=50
Bài 1:
Ta có: AB > AC (GT)
=> BH > CH (Quan hệ giữa các đường xiên và hình chiếu của chúng)
=> BD > CD (Quan hệ giữa các đường xiên và hình chiếu của chúng)
Bài 3:
a) Ta có: \(\left\{{}\begin{matrix}BD+MD=BM\\CE+ME=CE\end{matrix}\right.\)
Mà: \(\left\{{}\begin{matrix}BD=CE\left(GT\right)\\MD=ME\left(GT\right)\end{matrix}\right.\)
=> BM = CE
Xét ΔABM và ΔACM ta có:
AB = AC (tam giác ABC cân tại A)
BM = CE (cmt)
AM: cạnh chung
=> ΔABM = ΔACM (c - c - c)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
Mà 2 góc này lại là 2 góc kề bù
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=180^0:2=90^0\)
=> AM ⊥ BC
b) Ta có: DM = EM (GT)
=> AD = AE (Quan hệ giữa các đường xiên và hình chiếu của chúng) (1)
Ta có: Hình chiếu BM > hình chiếu DM
=> AB > AD (Quan hệ giữa các đường xiên và hình chiếu của chúng) (2)
Lại có: AB = AC (ΔABC cân tại A) (3)
Từ (1); (2) và (3) => AB = AC > AD = AE
a.b.c hay số abc
a,b,c bạn ak giải mình vs