Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
\(N=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
=>\(N=\frac{13860}{41580}+\frac{10385}{41580}+\frac{8316}{41580}+\frac{11880}{41580}+\frac{9240}{41580}+\frac{7560}{41580}\)
=>\(N=\frac{61251}{41580}\)
=>N ko phải là số nguyên (đpcm)
HỌC TÔT :)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Vì \(\frac{2}{6}>\frac{2}{12};\frac{2}{8}>\frac{2}{12};\frac{2}{10}>\frac{2}{12};...;\frac{1}{11}>\frac{2}{12}\)
\(\Rightarrow E=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>6.\frac{2}{12}=1\) \(\left(1\right)\)
Vì \(\frac{2}{8}< \frac{2}{6};\frac{2}{10}< \frac{2}{6};...;\frac{2}{11}< \frac{2}{6}\)
\(\Rightarrow E=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< 6.\frac{2}{6}=2\) \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow1< E< 2\Rightarrow E\notin Z\)(đpcm)
a, \(\frac{1}{4}+\frac{5}{12}-\frac{1}{13}-\frac{7}{8}\)
\(=\left(\frac{1}{4}+\frac{5}{12}\right)-\left(\frac{1}{13}+\frac{7}{8}\right)\)
\(=\frac{2}{3}-\frac{99}{104}\)
\(=-\frac{89}{312}\)
b, \(11\frac{3}{13}-2\frac{4}{7}+5\frac{3}{13}\)
\(=\left(11\frac{3}{13}+5\frac{3}{13}\right)-2\frac{4}{7}\)
\(=\frac{214}{13}-\frac{18}{7}\)
\(=\frac{1264}{91}\)
c, \(\left(6\frac{4}{9}+3\frac{7}{11}\right)-4\frac{4}{9}\)
\(=6\frac{4}{9}+3\frac{7}{11}-4\frac{4}{9}\)
\(=\left(6\frac{4}{9}-4\frac{4}{9}\right)+3\frac{7}{11}\)
\(=2+3\frac{7}{11}\)
\(=5\frac{7}{11}\)
\(=\frac{62}{11}\)
d, \(\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-0,25-\frac{1}{12}\right)\)
\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\cdot0\)
\(=0\)
e, \(-1,5\cdot\left(1+\frac{2}{3}\right)\)
\(=-\frac{3}{2}\cdot\frac{5}{3}\)
\(=-\frac{5}{2}\)
f, Đặt \(A=1^2+2^2+3^2+...+100^2\)
\(=1+2\left(3-1\right)+3\left(4-1\right)+...+100\left(101-1\right)\)
\(=1+2\cdot3-2+3\cdot4-3+...+100\cdot101-100\)
\(=\left(2\cdot3+3\cdot4+...+100\cdot101\right)-\left(1+2+3+...+100\right)\)
Đặt B = 2 . 3 + 3 . 4 + ... + 100 . 101
3B = 2 . 3 ( 4 - 1 ) + 3 . 4 ( 5 - 2 ) + ... + 100 . 101 . ( 102 - 99 )
3B = 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 100 . 101 . 102 - 99 . 100 . 101
3B = 100 . 101 . 102
B = \(\frac{100\cdot101\cdot102}{3}\)
B = 343400
Thay B vào A. Ta được :
\(A=343400-\left(1+2+3+...+100\right)\)
Thay C = 1 + 2 + 3 + ... + 100
Dãy số 1; 2; 3; ...; 100 có số số hạng là:
( 100 - 1 ) : 1 + 1 = 100 ( số hạng )
Tổng của dãy số đó là :
( 100 + 1 ) . 100 : 2 = 5050
=> C = 5050
Thay C vào A. Ta được :
\(A=343400-5050\)
\(A=338350\)
Vậy A = 338350
Bài 2:
a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)
\(\Leftrightarrow x:\frac{1}{45}=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{2}:\frac{1}{45}=\frac{45}{2}\)
b) \(\left(2x-1\right).\left(2x+3\right)=0\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
c) \(\frac{4-3x}{2x+5}=0\Leftrightarrow4-3x=0\)
\(\Leftrightarrow3x=4\Rightarrow x=\frac{4}{3}\)
d) \(\left(x-2\right).\left(x+\frac{2}{3}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{3}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{3}{2}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Bài 2:
a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)
=> \(x:\frac{1}{45}=\frac{1}{2}\)
=> \(x=\frac{1}{2}.\frac{1}{45}\)
=> \(x=\frac{1}{90}\)
Vậy \(x=\frac{1}{90}.\)
b) \(\left(2x-1\right).\left(2x+3\right)=0\)
=> \(\left\{{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}2x=0+1=1\\2x=0-3=-3\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1:2\\x=\left(-3\right):2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{2};-\frac{3}{2}\right\}.\)
Mình chỉ làm được thế thôi nhé, mong bạn thông cảm.
Chúc bạn học tốt!
A = 5/7.(1+9/13) − 5/7.9/13
A= 5/7.(1+9/13 - 9/13)
A = 5/7.1
A = 5/7
B = 11/24 − 5/41 + 13/24 + 0.5 − 36/41
B = (11/24 + 13/24) - (5/41 + 36/41) + 0.5
B = 1 - 1 + 0.5
B = 0.5
C = −4/13.5/17 + (−12/13).4/17 + 4/13
C = 4/13.(-5/17) + (−12/13).4/17 + 4/13
C = 4/13.(-5/17 + 1) + (−12/13).4/17
C = 4/13.(−12/17) + (−12/13).4/17
C = (4.-12)/(13.17) + (−12/13).4/17
C = 4/17.(−12/13) + (−12/13).4/17
C = 4/17.(−12/13).2
C = 96/221
D = (4/3 − 3/2)2 − 2.∣−1/9∣ + (−5/18)
D = (4/3 − 3/2)2 − 2.1/9+ (−5/18)
D = -1/62 - 2/9+ (−5/18)
D = -1/12 - ( 2/9+ (−5/18) )
D = -1/12 - ( 4/18+ (−5/18) )
D = -1/12 - (-1/18)
D = -1/12 + 1/18
D = -3/36 + 2/36
D = -1/36
E = (−3/4 + 2/3):5/11 + (−1/4 + 1/3):5/11
E = (−3/4 + 2/3 + (−1/4) + 1/3):5/11
E = ((−3/4 + (−1/4)) + (2/3 + + 1/3)):5/11
E = ( - 1 + 1):5/11
E = 0:5/11
E = 0
Ta có: \(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(\Rightarrow E=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Do: \(\frac{2}{6}>\frac{2}{12};\frac{2}{8}>\frac{2}{12};\frac{2}{10}>\frac{2}{12};...;\frac{2}{11}>\frac{2}{12}\)
\(\Rightarrow E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{2}{12}.6=1\) \(\left(1\right)\)
Lại có: \(\frac{2}{8}< \frac{2}{6};\frac{2}{10}< \frac{2}{6};...;\frac{2}{11}< \frac{2}{6}\)
\(\Rightarrow E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{2}{6}.6=2\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow1< E< 2\)
\(\Rightarrow E\notin Z\)\(\left(đpcm\right)\)
Chúc bạn học tốt !!!