K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

O I B A M C D E F K (d)

a) Xét đường tròn (O; R) có I là trung điểm của dây AB

=> OI ⊥ AB (liên hệ giữa đường kính và dây cung)

=> ΔMIO vuông tại I => I, M, O cùng thuộc đường tròn đường kính OM

ΔMCO vuông tại C => C, M, O cùng thuộc đương tròn đường kính OM

ΔMDO vuông tại D => D, M, O cùng thuộc đường tròn đường kính OM

=> I, M, O, C, D cùng thuộc đường tròn đường kính OM

b) Xét ΔKOD và ΔKMI có: \(\widehat{KDO}=\widehat{KIM}\) (=90o)

                                           \(\widehat{OKM}\) chung

=> ΔKOD ~ ΔKMI (g.g) => \(\dfrac{KO}{KM}=\dfrac{KD}{KI}\) => KO.KI = KD.KM

c) Xét đường tròn (O; R), tiếp tuyến MC, MD => MO là phân giác \(\widehat{CMD}\); MD = MC

Lại có OC = OD = R => OM là trung trực của CD hay OM ⊥ CD.

Mà CD // EF => OM ⊥ EF. Lại có MO là phân giác \(\widehat{CMD}\) 

=> \(\widehat{CMO}=\widehat{DMO}\) => ΔEMO = ΔFMO (g.c.g)

=> SEMO = SFMO =\(\dfrac{1}{2}\)SEMF

Để SEMF nhỏ nhất thì SEMO nhỏ nhất

=> \(\dfrac{1}{2}\)EM.OC = \(\dfrac{1}{2}\).R.EM nhỏ nhất => EM nhỏ nhất (do R cố định)

Ta có: EM = EC + CM ≥ 2\(\sqrt{EC.CM}\)=2R (BĐT Cô-si)

Dấu "=" xảy ra ⇔ EC = CM => OC = CE = CM (t/c đường trung tuyến trong tam giác vuông) => ΔCMO vuông cân tại C => OM = OC\(\sqrt{2}\) =R\(\sqrt{2}\)

Vậy để SEMF nhỏ nhất thì M là giao điểm của (d) và (O; R\(\sqrt{2}\))