Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ODAE có
góc ODA+góc OEA=180 độ
=>ODAE là tứ giác nội tiếp
b: \(AE=\sqrt{\left(3R\right)^2-R^2}=2\sqrt{2}\cdot R\)
\(OI=\dfrac{OE^2}{OA}=\dfrac{R^2}{3R}=\dfrac{R}{3}\)
c: Xét ΔDIK vuông tại I và ΔDHE vuông tại H có
góc IDK chung
=>ΔDIK đồng dạng vơi ΔDHE
=>DI/DH=DK/DE
=>DH*DK=DI*DE=2*IE^2
(Bài này có dính líu đến tứ giác nội tiếp một chút, không biết bạn học chưa. Mình sẽ cố né nội dung đó.)
\(A,O,B,C\) cùng thuộc đường tròn đường kính \(AO\).
\(B,O,C,E\) cùng thuộc đường tròn đường kính \(BE\).
(Bạn có thể chứng minh 2 điều này bằng các góc vuông)
Mà đường tròn ngoại tiếp tam giác \(BOC\) chỉ có 1 nên \(A,B,O,C,E\) cùng thuộc đường tròn.
\(AECO\) là hình thang nội tiếp nên nó là hình thang cân.
Từ đó CM được \(GA=GO,IA=IO\) và suy ra \(IG\) là đường trung trực của \(OA\).