Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )
Cho đường tròn tâm bán kính . Điểm thuộc đoạn thẳng ( khác và ). Đường thẳng vuông góc với tại cắt đường tròn tại hai điểm và . Tiếp tuyến tại của đường tròn cắt đường thẳng tại . Tiếp tuyến tại của đường tròn cắt đường thẳng tại . Gọi là giao điểm của hai đường thẳng và .
Chứng minh các tứ giác và là tứ giác nội tiếp.
xet tu giac AFDO co: goc FAO=FDO=90(gt)
=> tu giac AFDO noi tiep ( tong 2 goc doi dien bang 180)
vi OA vuong goc voi DK tai C (gt) va D,K thuoc (O)
=> OC la duong trung truc cua DK
=> tam giac ODK can tai O
=> goc ODK = OKD (1)
Mat khac,
va ta thay DC vuong goc voi OA
nen H la truc tam cua tam giac OAD
=>AH vuong goc voi OD=> AH song song voi ED
=> goc HAO=DEO (dong vi) (2)
Ta thay goc DEO= 90- goc DOE (tong 3 goc trong tam giac DOE)
va goc ODK=90- goc DOE (tong 3 goc trong tam giac DOK)
=>goc ODK=DEO (3)
Tu (1);(2);(3)=> goc OAH=OKH
=>tu giac AHOK noi tiep