Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có: góc AEI = 90o (góc nội tiếp chắn nửa đường tròn) => EI\(\perp\)AK tại E và AH\(\perp\)KI tại H (gt)
chúng cắt nhau tại B => B là trực tâm. => KB vuông góc AI (đpm)
b, ta có: góc ECA = góc EBA ( cùng chắn cung AE) mà góc EBA= góc HBI (hai góc đối đỉnh) (4)
ta lại có: góc HBI + góc HIB =90o (tổng 3 góc trong một tam giác) (3)
=> góc ECA + góc HIB = 90o (1)
Xét tam giác CEI vuông tại E nên: góc EKI + góc HIB =90o (2)
Từ (1) và (2) => góc ECA = góc EKI
=> tứ giác EKNC là tứ giác nội tiếp ) (đpcm)
c,Ta có: góc EAB + góc EBA = 90o và từ (3), (4) => góc EAB = góc BIH
mà góc EAB = góc BEN ( bằng 1/2 sđ cung EB)
=> góc BIH = góc BEN=> tam giác ENI cân tại N=> EN =NI (*)
Tương tự, ta có góc K + góc KAH = 90o
góc KEN + góc NEB =90o mà góc KAH = góc NEB (c.m.t) => góc KEN = góc K => tam giác KNE cân tại N => NK = NE (**)
từ (*) và (**) => NK = NI hay N là trung điểm KI ( đpcm)
a) Ta có: \(\angle ABO+\angle ACO=90+90=180\Rightarrow ABOC\) nội tiếp
Vì AB,AC là tiếp tuyến \(\Rightarrow\Delta ABC\) cân tại A và AO là phân giác \(\angle BAC\)
\(\Rightarrow AO\bot BC\)
b) Ta có: \(\angle OME=\angle OBE=90\Rightarrow OMBE\) nội tiếp
\(\Rightarrow\angle OBM=\angle OEM\)
c) Vì \(\Delta ABC\) cân tại A và AO là phân giác \(\angle BAC\)
\(\Rightarrow H\) là trung điểm BC
Tương tự như câu b \(\Rightarrow\angle OFM=\angle OCM\)
mà \(\angle OBM=\angle OCM\) (\(\Delta OBC\) cân tại O)
\(\Rightarrow\angle OFM=\angle OEM\Rightarrow\Delta OFE\) cân tại O có \(OM\bot FE\)
\(\Rightarrow\) M là trung điểm FE
Xét \(\Delta HFM\) và \(\Delta BEM:\) Ta có: \(\left\{{}\begin{matrix}MH=MB\\MF=ME\\\angle HMF=\angle BME\end{matrix}\right.\)
\(\Rightarrow\Delta HFM=\Delta BEM\left(c-g-c\right)\Rightarrow\angle HFM=\angle BEM\)
\(\Rightarrow HF\parallel BE\Rightarrow HF\parallel AB\) mà H là trung điểm BC
\(\Rightarrow F\) là trung điểm BC
a) Xét tứ giác ECOM có
\(\widehat{OME}\) và \(\widehat{OCE}\) là hai góc đối
\(\widehat{OME}+\widehat{OCE}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ECOM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)