Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Cô sửa thành AM2 = CM.CD
Xét tam giác ACM và DCA có: \(\widehat{C}\) chung, \(\widehat{CAM}=\widehat{CDA}\) (Chắn hai cung CB và CA bằng nhau)
Vậy thì \(\Delta ACM\sim\Delta DCA\left(g-g\right)\Rightarrow\frac{AC}{CD}=\frac{CM}{CA}\Rightarrow CA^2=CD.CM\)
b. C là điểm chính giữa cung AB nên OC vuông góc AB tại trung điểm N. Gọi I là tâm đường tròn ngoại tiếp tam giác ADM. AI cắt (O) tại J.
Do câu a: \(\Delta ACM\sim\Delta DCA\left(g-g\right)\Rightarrow\widehat{CAD}=\widehat{CMA}\)
Lại có \(\widehat{JAD}=\widehat{JCD}\) nên \(\widehat{JAD}+\widehat{DAC}=\widehat{JCD}+\widehat{CMA}=90^o\Rightarrow\widehat{CAJ}=90^o\)
Vậy CJ là đường kính (O) hay J cố định, từ đó suy ra Ạ cố định. Lại có tâm I luôn thuộc AJ nên ta đã chứng minh được tâm đường tròn ngoại tiếp tam giác ADM thuộc một đường thẳng cố định.
Lời giải:
a) Xét tam giác $MBC$ và $MDB$ có:
$\widehat{M}$ chung
$\widehat{MBC}=\widehat{MDB}$ (do là góc nt chắn 2 cung MB và MA bằng nhau)
$\Rightarrow \triangle MBC\sim \triangle MDB$ (g.g)
$\Rightarrow \frac{MB}{MD}=\frac{MC}{MB}\Rightarrow MB^2=MC.MD$
Mà $MB=MA$ nên $MA^2=MC.MD$ (đpcm)
b) Đã chứng minh ở phần a.
Hình vẽ: