K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Lời giải:

a) Xét tam giác $MBC$ và $MDB$ có:

$\widehat{M}$ chung

$\widehat{MBC}=\widehat{MDB}$ (do là góc nt chắn 2 cung MB và MA bằng nhau)

$\Rightarrow \triangle MBC\sim \triangle MDB$ (g.g)

$\Rightarrow \frac{MB}{MD}=\frac{MC}{MB}\Rightarrow MB^2=MC.MD$

Mà $MB=MA$ nên $MA^2=MC.MD$ (đpcm)

b) Đã chứng minh ở phần a.

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Hình vẽ:

undefined

8 tháng 5 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng g: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [C, D] Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [C, O] Đoạn thẳng n: Đoạn thẳng [O, J] Đoạn thẳng p: Đoạn thẳng [A, J] O = (1.28, 3.2) O = (1.28, 3.2) O = (1.28, 3.2) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Giao điểm của c, f Điểm C: Giao điểm của c, f Điểm C: Giao điểm của c, f Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm I: Tâm của d Điểm I: Tâm của d Điểm I: Tâm của d Điểm N: Giao điểm của g, k Điểm N: Giao điểm của g, k Điểm N: Giao điểm của g, k Điểm J: Giao điểm của c, m Điểm J: Giao điểm của c, m Điểm J: Giao điểm của c, m

a. Cô sửa thành AM2 = CM.CD

Xét tam giác ACM và DCA có: \(\widehat{C}\) chung, \(\widehat{CAM}=\widehat{CDA}\) (Chắn hai cung CB và CA bằng nhau)

Vậy thì \(\Delta ACM\sim\Delta DCA\left(g-g\right)\Rightarrow\frac{AC}{CD}=\frac{CM}{CA}\Rightarrow CA^2=CD.CM\)

b.  C là điểm chính giữa cung AB nên OC vuông góc AB tại trung điểm N. Gọi I là tâm đường tròn ngoại tiếp tam giác ADM. AI cắt (O) tại J.

Do câu a: \(\Delta ACM\sim\Delta DCA\left(g-g\right)\Rightarrow\widehat{CAD}=\widehat{CMA}\)

Lại có \(\widehat{JAD}=\widehat{JCD}\) nên \(\widehat{JAD}+\widehat{DAC}=\widehat{JCD}+\widehat{CMA}=90^o\Rightarrow\widehat{CAJ}=90^o\)

Vậy CJ là đường kính (O) hay J cố định, từ đó suy ra Ạ cố định. Lại có tâm I luôn thuộc AJ nên ta đã chứng minh được tâm đường tròn ngoại tiếp tam giác ADM thuộc một đường thẳng cố định.

8 tháng 5 2017

em thấy không ổn lắm ạ vì \(\widehat{JCD}\ne\widehat{OCD}\)