Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*, Kẻ OH vuông AB, H \(\in\)AB
=> H là trung điểm AB
=> HB = AB/2 = 40/2 = 20 cm
Theo định lí Pytago tam giác OBH vuông tại H
\(OH=\sqrt{OB^2-HB^2}=15\)cm
*, Kẻ OT vuông CD, T \(\in\)CD
=> T là trung điểm CD
=> TD = DC/2 = 48/2 = 24 cm
Theo định lí Pytago tam giác ODC vuông tại T
\(OT=\sqrt{OD^2-DT^2}=7\)cm
Kẻ OK ⊥ CD ⇒ CK = DK = (1/2).CD
Kẻ OH ⊥ AB ⇒ AH = BH = (1/2).AB
Vì AB // CD nên H, O, K thẳng hàng
Áp dụng định lí Pitago vào tam giác vuông OBH ta có:
O B 2 = B H 2 + O H 2
Suy ra: O H 2 = O B 2 - B H 2 = 25 2 - 20 2 = 225
OH = 15 (cm)
Áp dụng định lí Pitago vào tam giác vuông ODK ta có:
O D 2 = D K 2 + O K 2
Suy ra: O K 2 = O D 2 - D K 2 = 25 2 - 24 2 = 49
OK = 7 (cm)
* Trường hợp O nằm giữa hai dây AB và CD (hình a):
HK = OH + OK = 15 + 7 = 22 (cm)
* Trường hợp O nằm ngoài hai dây AB và CD (hình b):
HK = OH – OK = 15 – 7 = 8 (cm)
Kẻ OM ⊥ AB, ON ⊥ CD.
Ta thấy M, O, N thẳng hàng. Ta có:
Áp dụng định lí Pitago trong tam giác vuông AMO có:
OM2 = OA2 – AM2 = 252 – 202 = 225
=> OM = √225 = 15cm
=> ON = MN – OM = 22 – 15 = 7 (cm)
Áp dụng định lí Pitago trong tam giác vuông CON có:
CN2 = CO2 – ON2 = 252 – 72 = 576
=> CN = √576 = 24
=> CD = 2CN = 48cm
Kẻ OM ⊥ AB, ON ⊥ CD.
Ta thấy M, O, N thẳng hàng. Ta có:
Áp dụng định lí Pitago trong tam giác vuông AMO có:
O M 2 = O A 2 – A M 2 = 25 2 – 20 2 = 22 2
=> OM = √225 = 15cm
=> ON = MN – OM = 22 – 15 = 7 (cm)
Áp dụng định lí Pitago trong tam giác vuông CON có:
C N 2 = C O 2 – O N 2 = 25 2 – 7 2 = 576
=> CN = √576 = 24
=> CD = 2CN = 48cm
Qua O kẻ đường thẳng vuông góc AB và CD, lần lượt cắt AB và CD tại E và F \(\Rightarrow\) E là trung điểm AB, F là trung điểm CD
\(AE=\dfrac{1}{2}AB=4\left(cm\right)\) ; \(CF=\dfrac{1}{2}CD=3\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông OAE:
\(OE=\sqrt{OA^2-AE^2}=\sqrt{R^2-AE^2}=3\left(cm\right)\)
Pitago tam giác vuông OCF:
\(OF=\sqrt{OC^2-CF^2}=\sqrt{R^2-CF^2}=4\left(cm\right)\)
\(\Rightarrow EF=OE+OF=7\left(cm\right)\)
tích cho t đi