Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B O D C E I N x a) Từ E vẽ đường thẳng vuông góc với Ax tại N
Ta có EN song song AB ( cùng \(\perp\) Ax)
Xét ΔNAE vuông tại N và ΔCAD vuông tại C, có
\(\widehat{NAE}\) = \(\widehat{CAD}\) (AD là tia phân giác của \(\widehat{CAx}\))
→ΔNAE đồng dạng ΔCAD (gn)
→\(\widehat{AEN}\) = \(\widehat{ADC}\) (2 góc tương ứng)
mà \(\widehat{AEN}\) = \(\widehat{BAE}\) ( 2goc1 so le trong của eN song song AB)
→\(\widehat{ADC}\) = \(\widehat{BAE}\) (cùng bằng \(\widehat{AEN}\) )
→ΔBAD cân tại B
Ta lại có ΔOAE cân tại O (OA=OE)
→\(\widehat{OAE}\) = \(\widehat{OEA}\) mà \(\widehat{BAE}\) =\(\widehat{ADC}\) (cmt)
→\(\widehat{OEA}\) = \(\widehat{ADC}\) (cùng bằng \(\widehat{OAE}\) )
mà 2 góc này nằm ở vị trí đồng vị của OE và BD→OE song song BD
b)Xét ΔACB nội tiếp (O) có đường kính AB
→ΔACB vuông tại C có cạnh huyền AB
Xét ΔAEB nội tiếp (O) có đường kính AB
→ΔAEB vuông tại E có cạnh huyền AB
Xét ΔADB có 2 đường cao Ac và BE cắt nhau tại I
→I là trực tâm→DI là đường cao trong ΔADB→DI \(\perp\) AB
a: Xét (O) có
ΔBCD nội tiếp
BD là đường kính
=>ΔBCD vuông tại C
=>CD//OA
b: ΔOBC cân tại O
mà OA là đường cao
nên OA là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
góc BOA=góc COA
OA chung
=>ΔOBA=ΔOCA
=>góc OCA=90 độ
=>AC là tiêp tuyến của (O)
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó:ΔACB vuông tại C
=>\(\widehat{ACB}=90^0\)
Ta có: ΔOAC cân tại O(OA=OC)
mà OH là đường trung tuyến
nên OH\(\perp\)AC và OH là tia phân giác của góc AOC
Ta có: OH\(\perp\)AC(cmt)
AC\(\perp\)CB tại C(Do ΔACB vuông tại C)
Do đó: OH//BC
b:
OH là phân giác của góc AOC
=>\(\widehat{AOH}=\widehat{COH}\)
mà M\(\in\)OH
nên \(\widehat{AOM}=\widehat{COM}\)
Xét ΔOCM và ΔOAM có
OC=OA
\(\widehat{COM}=\widehat{AOM}\)
OM chung
Do đó: ΔOCM=ΔOAM
=>\(\widehat{OCM}=\widehat{OAM}\)
mà \(\widehat{OCM}=90^0\)
nên \(\widehat{OAM}=90^0\)
=>OA\(\perp\)MA tại A
=>MA là tiếp tuyến tại A của (O)
a:
I nằm giữa O và A
=>OI+IA=OA
=>OI=OA-AI
=R-R'
=>(O) với (I) tiếp xúc nhau tại A
b: ΔIAD cân tại I
=>góc IAD=góc IDA
=>góc IDA=góc OAC
ΔOAC cân tại O
=>góc OAC=góc OCA
=>góc IDA=góc OCA
mà hai góc này đồng vị
nên ID//OC
c: Xét (I) có
ΔADO nội tiếp
AO là đường kính
=>ΔADO vuông tại D
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó; ΔACB vuông tại C
Xét ΔACB vuông tại C có cos CAB=AC/AB=1/2*căn 3
=>góc CAB=30 độ
CB=căn AB^2-AC^2=R/2
\(S_{CAB}=\dfrac{1}{2}\cdot CA\cdot CB=\dfrac{1}{2}\cdot\dfrac{R\sqrt{3}}{2}\cdot\dfrac{1}{2}R=\dfrac{R^2\sqrt{3}}{8}\)
Xét ΔADO vuông tại D và ΔACB vuông tại C có
góc DAO chung
Do đó: ΔADO đồng dạng với ΔACB
=>\(\dfrac{S_{ADO}}{S_{ACB}}=\left(\dfrac{AO}{AB}\right)^2=\left(\dfrac{1}{4}\right)\)
=>\(S_{ODCB}=\dfrac{3}{4}\cdot S_{ACB}=\dfrac{3}{4}\cdot\dfrac{R^2\sqrt{3}}{8}=\dfrac{3\cdot\sqrt{3}\cdot R^2}{32}\)