K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4

A B C D E O G F H K I

a/

Ta có

\(\widehat{OAC}=\widehat{OGC}=90^o\)

=> A và G cùng nhìn OC dưới hai góc bằng nhau và bằng \(90^o\) => A và C thuộc đường trong đường kính OC => ACGO nội tiếp

Xét tg vuông OGF và tg vuông CAF có chung \(\widehat{AFC}\)

=> tg OGF đồng dạng với tg CAF (g.g.g)

\(\Rightarrow\dfrac{GO}{AC}=\dfrac{FO}{FC}\Rightarrow GO.FC=AC.FO\)

b/

Xét tứ giác nội tiếp ACGO có

\(\widehat{OCG}=\widehat{OAG}\) (góc nt cùng chắn cung GO)

EK//CO (gt) \(\Rightarrow\widehat{OCG}=\widehat{HEG}\) (góc so le trong)

\(\Rightarrow\widehat{OAG}=\widehat{HEG}\)

=> A và E cùng phía với GH; A và E cùng nhìn GH dưới 2 góc bằng nhau => AGHE là tứ giác nội tiếp

\(\widehat{BAE}=\widehat{HGE}\) (góc nt cùng chắn cung HE

Xét (O) có

\(\widehat{BAE}=\widehat{BDE}\) (Góc nt cùng chắn cung BE)

\(\Rightarrow\widehat{HGE}=\widehat{BDE}\) mà 2 góc trên ở vị trí đồng vị =>GH//KD (1)

Ta có

\(OG\perp DE\Rightarrow GD=GE\) (trong đường tròn đường thẳng đi qua tâm và vuông góc với dây cung thì chia đôi dây cung) (2)

Xét tg DEK từ (1) và (2) => HK=HE (trong tam giác đường thẳng // với 1 cạnh và đi qua trung điểm của 1 cạnh thì đi qua trung điểm cạnh còn lại)