K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 8 2020

Hình vẽ:
Violympic toán 9

AH
Akai Haruma
Giáo viên
8 tháng 8 2020

Lời giải:

Vì $A, G, E, B$ cùng thuộc $(O)$ nên $AGEB$ là tgnt

$\Rightarrow DG.DE=DA.DB(1)$

$\widehat{AEB}=90^0$ (góc nt chắn nửa đường tròn)

$\Rightarrow \widehat{AEC}=180^0-\widehat{AEB}=90^0$

$\Rightarrow \widehat{AEC}+\widehat{CDA}=90^0+90^0=180^0$

$\Rightarrow EADC$ là tgnt

$\Rightarrow BA.BD=BE.BC(2)$

Lấy $(1)$ nhân $(2)$ theo vế suy ra: $DG.DE.BA=DA.BE.BC$

$\Rightarrow \frac{DA}{BA}=\frac{DG.DE}{BE.BC}$ (đpcm)

13 tháng 2 2022

Bài này mk cx ko bt lm ý b , nó khó ghê lun 

 

28 tháng 5 2023

Em tự vẽ hình nhé!

Có: \(\widehat{CDA}=90^o\)

\(\widehat{CEA}=\widehat{BEA}=90^o\)

\(\Rightarrow\widehat{CDA}+\widehat{CEA}=90^o+90^o=180^o\)

Do đó: tứ giác EADC nội tiếp.

7 tháng 4 2020

a) Xét tam giác DFB có:

\(\hept{\begin{cases}\widehat{D}=90^o\left(DE\perp AB\right)\\\widehat{C}=90^o\end{cases}}\)

=> Tứ giác DFBC nội tiếp

b) Xét tam giác BFG có \(\hept{\begin{cases}\widehat{FBG}=\frac{1}{2}\widebat{AG}\\\widehat{BGF}=\frac{1}{2}\widebat{AE}\end{cases}}\)

Mà cung AB= cùng BG

=> BF=BG 

a) Xét (O) có 

\(\widehat{BFA}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BFA}=90^0\)(Hệ quả góc nội tiếp)

\(\Leftrightarrow\widehat{BFC}=90^0\)
Xét tứ giác DFBC có 

\(\widehat{CDB}\) và \(\widehat{CFB}\) là hai góc đối

\(\widehat{CDB}+\widehat{CFB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: DFBC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

đề bài bị khuyết tật rồi kìa