Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: DO cắt AC tại E
a) Xét (O) có
DA là tiếp tuyến có A là tiếp điểm(gt)
DC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: DA=DC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: DA=DC(Cmt)
nên D nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OA=OC(=R)
nên O nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra DO là đường trung trực của AC
\(\Leftrightarrow DO\perp AC\)
mà DO cắt AC tại E(gt)
nên \(DO\perp AC\) tại E
Xét tứ giác CEOH có
\(\widehat{CEO}\) và \(\widehat{CHO}\) là hai góc đối
\(\widehat{CEO}+\widehat{CHO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: CEOH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc EHB+góc EDB=180 độ
=>BDHE nội tiếp
b: Xét ΔACE và ΔADC có
góc ACE=góc ADC
góc CAE chung
=>ΔACE đồng dạng với ΔADC
=>AC^2=AE*AD
a: Xét (O) có
ΔAKB nội tiếp
AB là đường kính
Do đó: ΔAKB vuông tại K
Xét tứ giác AECK có \(\widehat{AEC}+\widehat{AKC}=90^0+90^0=180^0\)
nên AECK là tứ giác nội tiếp
b: Xét ΔIAB có
BK,IE là các đường cao
BK cắt IE tại C
Do đó: C là trực tâm của ΔIAB
=>AC\(\perp\)IB tại D
Xét tứ giác CEBD có \(\widehat{CEB}+\widehat{CDB}=90^0+90^0=180^0\)
nên CEBD là tứ giác nội tiếp
Xét tứ giác AKCE có \(\widehat{AKC}+\widehat{AEC}=90^0+90^0=180^0\)
nên AKCE là tứ giác nội tiếp
Xét tứ giác IKCD có \(\widehat{IKC}+\widehat{IDC}=90^0+90^0=180^0\)
nên IKCD là tứ giác nội tiếp
Ta có: \(\widehat{DKC}=\widehat{DIC}\)(DIKC nội tiếp)
\(\widehat{EKC}=\widehat{EAC}\)(KAEC nội tiếp)
mà \(\widehat{DIC}=\widehat{EAC}\left(=90^0-\widehat{DBA}\right)\)
nên \(\widehat{DKC}=\widehat{EKC}\)
=>KC là phân giác của góc DKE
Ta có: \(\widehat{KDC}=\widehat{KIC}\)(DIKC là tứ giác nội tiếp)
\(\widehat{EDC}=\widehat{EBC}\)(EBDC nội tiếp)
mà \(\widehat{KIC}=\widehat{EBC}\left(=90^0-\widehat{KAB}\right)\)
nên \(\widehat{KDC}=\widehat{EDC}\)
=>DC là phân giác của góc KDE
Xét ΔKED có
DC,KC là các đường phân giác
Do đó: C là tâm đường tròn nội tiếp ΔKED
=>C cách đều ba cạnh của ΔKED
a: góc CDH=1/2*sđ cung CH=90 độ
góc CEH=1/2*sđ cung CH=90 độ
góc ACB=1/2*180=90 độ
Vì góc CDH=góc CEH=góc DCE=90 độ
nên CDHE là hình chữ nhật
b: ΔCHA vuông tại H có HD là đường cao
nên CD*CA=CH^2
ΔCHB vuông tại H
mà HE là đường cao
nên CE*CB=CH^2=CD*CA
CDHE là hình chữ nhật
=>góc CDE=góc CHE=góc CBA
=>góc ADE+góc ABE=180 độ
=>ABED nội tiếp
a) Xét tứ giác ECOM có
\(\widehat{OME}\) và \(\widehat{OCE}\) là hai góc đối
\(\widehat{OME}+\widehat{OCE}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ECOM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)
hay \(\widehat{DCB}=90^0\)
Xét tứ giác DCBO có
\(\widehat{DCB}\) và \(\widehat{DOB}\) là hai góc đối
\(\widehat{DCB}+\widehat{DOB}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: DCBO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
xet tg BCDE ta co;
góc acb = 90 ( goc noi tiep chan nua dg tron)
goc DEB =90(gt)
vay tg BCDE noi tiep( t/c cua tg noi tiep)