K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

Xét tứ giác ADEH có \(\widehat{ADE}+\widehat{AHE}=90^0+90^0=180^0\)

nên ADEH là tứ giác nội tiếp

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi...
Đọc tiếp

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. 

a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.

b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O). 

c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.

2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC. 

a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định. 

b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.

Mọi người giúp em với ạ.

0
2 tháng 4 2019

Mình thấy câu c khó quá

Nếu cậu lm đc giúp mk nha

25 tháng 2 2017

B O A C D K H E

a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp

b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)

Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)

=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)

c,  Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)

Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)

=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp

=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)

=> \(CE⊥BD\)(ĐPCM)

d, em xem lại xem có gõ sai đề không nhé

16 tháng 8 2018

Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất. 

Nhờ mọi người giải dùm e với.

13 tháng 5 2016
a, ta có góc FIB=90° (gt) góc FEB= góc AEB=90° (góc ntiêp chắn nửa đg tròn) => góc FIB+FEB=180° => tứ giác BEFI nội tiếp b) Xét tam giác AFC và tam giác ACE có: góc CAE chung Do AO vuông góc vs CD => cung AC=cung AD mà góc ACD=1/2 sđ cung AD; Góc CEA=1/2 sđ Cung AC => góc ACD=CEA (chăn 2 cung =nhau) => tam giác AFC đồng dạng vs tam giác ACE (g.g) => AE/AC=AC/AF => AE.AF=AC^2 (đpcm)
11 tháng 5 2016

c) Có ACF = CBA (phụ ICB) . Trong (O) có ACF = CEF (chắn hai cung bằng nhau AC và cung AD) vậy ACF = CEF < 90 nên AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CEF suay ra tâm của đường tròn đường tròn ngoại tiếp tam giác CEF thuộc đường vuông góc AC tại C nên Tâm thuộc AC cố định khi E thay đổi trên cung nhỏ BC

10 tháng 5 2016

bạn ơi khó lắm mik trả giải nổi đâu sorry nha

7 tháng 11 2017
a, Ta có góc FIB=90° (gt) góc FEB= góc AEB=90° (góc ntiêp chắn nửa đg tròn) => góc FIB+FEB=180° => Tứ giác BEFI nội tiếp
b) Xét tam giác AFC và tam giác ACE có: góc CAE chung Do AO vuông góc vs CD => cung AC=cung AD mà góc ACD=1/2 sđ cung AD; Góc CEA=1/2 sđ Cung AC => góc ACD=CEA (chăn 2 cung =nhau) => tam giác AFC đồng dạng với tam giác ACE (g.g) => AE/AC=AC/AF => AE.AF=AC^2 (đpcm)
c, Có ^ACF = ^CBA (phụ ^ICB) . Trong (O) có ^ACF = ^CEF (chắn hai cung bằng nhau AC và cung AD) vậy ^ACF = ^CEF < 90 nên AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CEF suy ra tâm của đường tròn đường tròn ngoại tiếp tứ giác CEF thuộc đường vuông góc AC tại C nên tâm thuộc AC cố định
 
 
28 tháng 5 2018

a) Tứ giác BEFI có: BFF = 90(gt)

BEF = BEA = 90o

=> Tứ giác BEFI là nội tiếp đường tròn đường kính BF

b)  O I F A B C D E

Vì \(AB\perp CD\)nên AC = AD

=> ACF = AEC

Xét tam giác ACF và tam giác AEC có gốc chung A và ACF = AEC

=> Tam giác ACF song song với tam giác AEC => \(\frac{AC}{AF}=\frac{AB}{AC}\)

=> AE . AF = AC2

c) Theo câu b) ta có: ACF = AEC = > AC là tiếp tuyến của đường tròn ngoại tiếp của tam giác CEF (1)

Mặt khác, ta có: ACB = 90(góc nội tiếp chứa đường tròn)

\(\Rightarrow AC\perp CB\)(2) 

Từ (1) và (2) => CB chứa đường kính của đường tròn ngoại tiếp tam giác CEF, mà CB cố định nên tâm của đường tròn ngoại tiếp tam giác CEF thuộc CB cố định E thay đổi trên cung nhỏ BC.