Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm đường tròn. Do MN=PQ và O là trung điểm của MN=PQ => MO=PO=QO=NO.
Trong tam giác MQN, ta thấy MQN là tam giác vuông vì đường trung tuyến bằng nữa cạnh huyền => góc Q vuông
Tương tự , ta có 4 góc của tứ giác đều vuông => tứ giác trên là hình chữ nhật (đpcm)
Hình:
Giải:
a) Ta có:
\(\left\{{}\begin{matrix}BH=HC\\MH=HO\end{matrix}\right.\)
Nên tứ giác BMCO là hình bình hành
\(\Rightarrow\left\{{}\begin{matrix}BM//OC\\BM=OC\end{matrix}\right.\left(1\right)\)
Tương tự, tứ giác OCND là hình bình hành
\(\Rightarrow\left\{{}\begin{matrix}DN//OC\\DN=OC\end{matrix}\right.\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\left\{{}\begin{matrix}BM//DN\\BM=OC=DN\end{matrix}\right.\)
Suy ra tứ giác BMND là hình bình hành
b) Để hình bình hành BMND trở thành hình chũ nhật thì BM⊥BD
Đồng thời BM//AC
Nên AC⊥BD
c) Vì BMCO là hình bình hành nên MC//BD (3)
Và BMND là hình bình hành nên MN//BD (4)
Từ (3) và (4), suy ra M,N,C thẳng hàng (theo tiên đề Ơ-clit)
Vậy ...
mk làm qua nha!
DB//ME nên \(\widehat{M_1}=\widehat{D_1}\)
suy ra \(\widehat{M_1}=\widehat{D_1}=\widehat{D_2}=\widehat{A_1}\)
suy ra AC//DF Mà DO//ME suy ra DOEI là hbh
b, lấy E' là giao của FB và AC
Bằng tính chất đường trung bình chứng minh E' là TĐ của FB (1)
kẻ DH// EF nha ko phải vuông góc đâu
Chứng minh EF=DH=EB(2)
gợi ý: sử dụng t/c hbh DHEF suy ra EF=DH
cm \(\Delta DHO=\Delta BEO\left(g.c.g\right)\)suy ra DH=EB
Từ 1 và 2 suy ra E trùng E' (cùng thuộc AC và EB=EF; E'B=E'F)
suy ra E là TĐ của FB
có gì ko hiểu thì nhắn tin hỏi mk nha!
Do AB,CD là đường kính của đường tròn O nên O là trung điểm của AB và CD ; và AB=CD
Mà đường kinh AB và CD là cắt nhau tại trung điểm O nên tứ giác ABCD là hình bình hành
Ta lại có : Hbh ABCD có : AB=CD nên Hbh ABCD là hcn( Hbh có hai đường chéo bằng nhau là hcn)
Học tốt~~~